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FOREWORD

This report presents analyses of unsteady gas flow in solid
propellant combustors, with particular reference to axial mode
oscillations. Of primary concern are the effects of deviations
from one-dimensionality, and of the role of the mean flow in the
oscillatory behavior. The results provide a guide to design and
interpretation of laboratory combustor experiments, which, to-
gether with analysis, provide the means for valid calculation of
5stability of new motor designs.

This work was sponsored jointly bv the Naval Ordnance Systems
Command under Task UF 332-303 and the Strategic Systems Projects
Office under Task Assignment 73761, and was carried out during the
period November 1971 to March 1972,
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NOMENCLATURE

Admittance function for pressure coupling (Eq. 9.F)
Speed of sound

Eq. 5.38

Specific heat at constant volume

Eq. 5.35

Eq. 5.27

Eq. 5.14

Internal energy per unit volume J CvdT of gases
Acoustic energy density (Eq. 5.2)

Stagnation internal energy, e + uZIZ

Total internal emergy of particulate matter (per unit volume of
chamber)

Stagnation internal emergy of particulate matter, ep + up2/2
Internal energy of gases entering at the surface
Time-averaged acoustic energy (Eq. 7.6)

Time-averaged acoustic energy (Ef., 7.4)

Force of interaction between gases and particles (Eq. 2.8)
Fg. 4.5

Eq. 4.16

Eq. 2.21

Enthalpy of gas per unit volume, e + p/p; also Eq. 4.15
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Stagnation enthalpy

Stagnation enthalpy of gases entzring at the surface
Eq. 2.19

Egq. 3.8

Time-averaged density of acoustic kinetic energy (Eq. 7.3)
Complex wavenumber, k = (w-ia)/a

Wavenumbexr for one-dimensional modes

Wavenumber for three-dimensional modes

Length of chamber

Mach number of gases entering at burning surface, ub/a
Vector mass fiux, pz, of gases

Mass flux of gas entering at the burning surface

Mass flux of particulate matter entering at the burning surface
Coordinate normal to the surface (Section 6)

Unit normal vector, positive outward from the surface
Eq. 2.17

Eq. 3.6

Egq. 4.2

Time-averaged potential emergy {(Eq. 7.3)

Pressure
Mode shape for one-dimensional oscillation
Mode shape for three-dimensional oscillations
Heat release, per unit volume, in homogenecus reactions

Heat release, per unit volume of chamber, associated with
combustion of particulate matter (Eq. 2.12)

Perimeter of chamber
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R Gas constant

Rb Response function for pressure coupling (Eq. 9.2)

r Radial coordinate
r, Radius of cylindrical chamber

be Area of burning surface at the end of a chamber

Sc Cross-sectional area of chamber

Sco Crcss-sectional area of uniform chamber

e

bs Area >f burning surface on the lateral surface of a chamber

Coordinate parallel to the surface (Sectica 6)

T Temperature
To Stagnation temwerature

AT Nonisentropic change of temperature

t Time

-3
u Velocity

E

= uy Velocity of gases entering the chamber, parallel to the surface
E 3, Velocity of gases mormal to the burning surface

E >

3 u

o Velocity of particulate matter (mass-averaged)

Velocity of particulate matter entering the chamber parallel to
Pl the surface

i

i
[~

Py
s Value of uy ior one-dimensional motioas

4 ups Value of G;" for one-dimensioral motions
.é . dV  Volume element
3 w Combustion of particulate matter to gas, mass per unit volume
. P per second
2z Coordinate along axis of the chamler
a

Growth constant (positive for growth of waves)

v Ratio of specific heats

3
5
=
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6 Eq. 6.19

63 Eq. 6.20

511",511.L Values of 0Jj , § at entrance to the nozzle
qn  RoOts of dJm(umnr)/dr =0 forr-= r,
p Density
4 pp Density of particulate matter, mass per unit volume of chamber

¢ Azimuthal angle

Vs

T T Lo k1A

Gradient in direction normal to the surface

Vi  Gradient parallel to the surface

Amz Eq. 10..

i

(' Fluctuation

é O Mean value; also time-averaged value

E Oy Amplitude of fluctuation, without time dependence
E ( )(r) Real part

2 ( )(i) Imaginary part

é () Time average (Secticn 8)

T
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1. INTRODUCTION

It has long been recognized (Ref. 1-4, for example) that a proper description
of unstable motions in a rocket motor must account for interactions between the
average and fluctuating flow fields. This is an important feature not generally
included in problems of classical acowmstics. The associated exchange of energy
may be either a loss or a gain for small amplitude motions. Moreover, the con-
tributions may be large encugh in some cases to be dominant influences for the

stability of oscillations.

Since residual combustion and the presence of liquid and solid material sus-
pended in the gas phase are accounted for, the work covered here is valid for any
kind of combustion chamber. However, most of the discussion wili be concerned
with unstable oscillations in solid propellant rocket motors; other applications
may be extracted as special cases. For 5 solid propellant uotor, the flow of mass
into the chamber has some particularly interesting conzequences. This has become
more apparent with recent work on "axial" or "longitudinal" waves in a chamber,
The main reason is that when there are wave motions parailel to the surface, the
mass entering normal to the surface undergoes inelastic processes of acceleration
to acquire the parallel motiens. As a result of work on the axial modes, earlier
computations (Ref. 2 and 2) of acoustic modes have been reexamined; it appears
that contributions associated with the mass flux at the boundary were incompletely

taken into account.

Since the configurations of experimental burners and rocket motors quite
naturally fall into peveral classes, thz treatment here is also split. At the
present time, there is considerable interest in the axial modes, which are best
handled in a oane-dimensional or modified one-dimensional formulation. However,
not only are theve three-dimensional modes having motions predominantly parallel
to the bcundary, dut also the axial modes may occur in very complicated configur-
ations. It is therefore necessary to have at hand tilie complete formulation for

three-dimensional problems.

The emphasis of the present work is mainly on linear problems, and particu-
Jarly those aspects related fo the Interactions between average and fluctuating
quantities. Howevér, the important influences of particles in the flow, burning
within the volume of the chamber, and the exhaust nozzle are included. The
first part of this repoxt (Sectiens 2-4) cover the formulation, including lin-
earization of three classes of probiems: one-dimensional, modified one-
"dimensional, and the familiar three-diwensional problem. The modified one-
dimensional problem takes into account, in the unperturbed problem, variacions
of cross-sectional area along the axis; tune result are therefore more accurata
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than those obtailied from the purely one-dimensional formulation. A restriction
which should be particularly noted is that for all cases treated here, lineariza-
tion is carried out 2ccording to a limiting process discussed in Ref. 3; the
governing equations used throughout are valid only if the Mach number of the mean
flow is small. When the Mach number becomes "large" (i.e., greater than, roughly,
0.2), both the mode structure and frequency are affected strongly, in respects
which cannot be ignored.

For each of the three classes of problems, a wave equation is formed. Solu-
tion for the case of harmonic motions, covered in Section 5, produces formulas for
the ccaplex wave number and hence the growth constant. Comparison of the formulas
for the modified one-dimensional and the three-dimensional problems shows signifi-
cant differences which lead to the principal new results of the present work.

iy )

i

g

1. 1If the interactions, or coupling, between the wave motions and surface
combustion are nonisentropic, then the formal representations of the
coupling are different for the two limiting cases; no acoustic motion
parallel tc the surface, and all acoustic motion parallel to the
surface.

2. There are energy losses, for the waves in the chamber, when mass
flows in at an element of surface where there is 2 component of
acoustic motion narallel to the surface.

Incorporation of these features in the three-dimensional problem is accomplished
in Section 6, and leads to what is here referred to as the modified three-
dimensional problem. The physical interpretation of these new contributions to
the growth constant--that is, to the energy balance for acoustic waves——is
covered in Section 7.

Perhaps the most important practical comsequence of this work is that it is
clear now that in general two functions must be known to characterize completely
the coupling between transient motions and combustion. These are conventionally
introduced as the admittance and response functions; other definitions are of
course possible., The physical origin of the need for two independent pieces of
information is that the coupling itself comprises two processes. One is mechani-
cal, which may be interpreted grossly as p-v work associated with velocity or
mass fluctuations of gas leaving the surface. The other is due to nonisentropic
temperature fluctunations at the edge of the combusti~n zone. Since the tempera-
ture fluctuations in the acoustic field are very closely isentropic--exactly so
within the analysis covered here--a nonisentropic fluctuation at the boundary will
generate a temperature or entropy wave which propagates through the chamber with
the speed of a mean flow. The energy required to generate such waves must ulti-
mately be accounted for in the energy balance of the acoustic waves within the
chamber.

Several years ago, Cantrell and Hart (Ref. 2) proposed that the growth con-—
stant for acoustic waves in a chamber, with mean flow and combustion at the sur-~
face, be computed by examining the total energy in the chamber. This is clearly
a sound idea, but care is required in the formulation. The analysis of Ref. 2 is

o
[N




NWC TP 5349

very briefly summarized in Section 8 to show an important restriction: it is not
possible, without modifications which are presently unknown, to determine the
effects of mass and energy sources distributed within the volume of the chamber.
This seems to ba a comsequence of treating the total energy of the system. In
Section 8.2, the linearized equatious are used to form an equation for the balance
of acoustic energy only. This produces directly a formula for the growth constant
which 1s identical with the earlier computation of the complex wave number.

The last two sections are concerned with applications of the analysis. Very
briefly in Section 9 a simple configuration of the T-burner is examined, to indi-
cate how experimentally the response and admittance functions might be determined.
Those functions must be known for the analysis of the stability of oscillations in
a motor, a subject treated in Section 10. The measurements of Brownlee and Marble
(Ref. 5), which have been discussed in previous works, are reexamined. A conclu-
sion of some recent work by Perry (Ref. 7) was that use of measurements taken in a
T-burner, and the analysis existing at that time led to significant differences
between the predicted and observed stability boundaries. Although it cannot be es-
tablished definitely at present, owing to the lack of sufficient measurements, it
appears that the na2w results obtained here may provide better agreement.

So far as the formal analysis of oscillations in a combustion chamber are con-
cerred, the most important subjects not covered here ure the influence of high
Mach number, of the mean flow, and nonlinear behavior.
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2. ONE-DIMENSIONAL PROBLEM

This section is based largely on Ref. 4. The formulation is well-known in
fluid mechanics: a one-dimensional flow with mass addition at the lateral boun-
dary. What is new ultimately concerns mainly problems of waves in such a flow,
with the principal source of driving located in the combustior zone at the lateral

boundary.

2.1. GOVERNING EQUATIONS

The conservation equations are

mass 9 3 _
(gas) 7108 ) + 5 (puS ) = jmbdq +w S (2. 1)
mass 9 K3 _ (p)
(particles) at (ppsc) %z (p pupsc) - rmb dq - wPS‘: (2.2)
, 2 9 2 2 9
momentum & [(ppv.lp-l~pu.)sc]+a—z [(pu +ppup )Sc]+Sc-5§ =
= (p)
=u_ j‘nxbdq+ups j‘mb dq (2.3)
ener -a-f(e+ e )S]+-§—[(ue+ ue )S'j+—i(uS)
gy at-popppoc oz poppppoc 9z P! (2.4)

The first two terms on the right-hand side of Eq. 2.3 represent momentum added to
the flow when the axial speeds of the gases and particles entering from the
lateral boundary are non-zero. The two terms on the right-hand side of Eq. 2.4
represant corresponding contributions to the energy balance. Heat released by
chemical reactions in the gas phase is represented by Q; hence, e and h represent

only thermal energy and enthalpy, respectively.

4
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In this section, variations of area will be treated as perturbations from the
case of a uniform chamber, so the equations for conservation of mass are written

9,9 = L _pu_c
ot T3z (Pu) = scfmbdq S, "’Wp (2.5)
dp p_u_ds
=P +2 - (p) -2P_c. (2.6)
st T3z PpYp) f W-5 T "
The momentum equation can be rewritten in the form
du
o Gireugstar = Footu @7
. with
%p iy
= - 2.
F [pp at te p p 9z (2-8)
o —!- ‘f d+uj‘ (p)d]+( lw
e al+ (u-u)w, (2.9)
1
n §- oJmpdare, Imép)dq] (2.10)

Moty R

Thus, F represents the force of the particles on the gas, averaged over the cross-
section, and 0 represents a momentum exchange between the chamber gases and two
sources of wass: the flow-in at the lateral boundary, and the mass of gas pro-
duced by burning of particles. The influence of differences between the average
momenta of the channel flow and the mass added at the boundary is contained in u.

The energy equation can be written for the temperature in the usual way,
first by expanding the left-hand side and using the continuity in Eq. 2.1 and

e e B R

2.2,
. P ’—Dto + Pp Dto + 55 (pu) = ‘§: (hos-eo)jmbdQ'* S¢ (epos epo)“ e
QB _dSc
E I e I M

i

I

A

et

i 1 i
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Now remove the kinetic energies from e, and epp by subtracting u times Eq. 2.3
and up times Eq. 2.8:

BT T du 1 (p)
pC, 5 *PC U5+ P35 = s (b -© ),fmbdq+ (e 08~ po)f dq

das
+u,~u)F +u(c-p) +(ep°-eo)wp-§3-a—z-c- () (2.11)

where Qp is the emergy released by combustion of particles:

de Oe
-[PthB + ppupEE] (2.12)

For reasons covered latexr, the total energy and enthalpy of the gases issu-
ing from the boundary will not be assumed equal to the average values in the
chamber. Thus, while epos = ep,1 hos # hp and eyg # 9. Define the difference
between epg and e, to be Aey:

®os eo+Ae° (2.13)

so that
(e, + Ae )+ plp - e,

=2
)
44
]

2
a’lytAe .

With the equation of state, p = pRT, for a perfect gas, Eq. 2.11 provides an
important equation for the pressure:

9p du op_1 2 R . . a e
S T YP g tuge = 5 (2 +RATO)‘fmbdq + —C—v[(up-\.)F+ 0(0-u)7 - -‘-’épc— - *

2
R
+E (e w4 (mqp)] (2.14)

2.2. LINEARIZED PERTURBATION EQUATIONS

~

For simplicity, the mean pressure and temperature are assumed oonstant. All
quantities are written as sums of mean values, (), and fluctuations, ( )', and
squares of fluctuations are dropped.? Then Eq. 2.7 and 2.14 lead to

! The kinetic energy of the particles is assumed to be small compared with
the internal energy.

2 Throughout this report, the primed ( )' quantities contain dependence on
time, while later quantities signified by ( )ndo not. Thus, for linear harmonic
motions, the fluctuation of pressure is p' = p exp (idkt).
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— out op! -0 -

Pt ey = Py @UWIFF -0+ (2.15)
op' . —du' _ = dp da
TtV = Uy - Gt P (2.16)

where Py is the perturbation of the right-hand side of Eq. 2.14,

= L2 R w 95,
P, = 5 (a“+RAT_)[m, dg+ < [(a -w)F+u(o-w)]- e _c

2
R u
o [(epe- SFow )] - (2.17)

The common linearized problems encounted in motors are most conveniently
analyzed by working with the wave equation for pressure fluctuations. This is
constructed by differentiating Eq. 2.16 with respect to time and inserting Eq.
2.15 for 3u'/3t to give:

2

2 p! 1 9 p' _
_%_-3_15_ = hl (2.18)
. oz a ot
with
2 - 2 — oP!
T 3 a%p oprdu 1 9P}
By = P gy PO g R st w2 e (219

Solution to Eq. 2.18 will eventually require a boundary condition for p', set
according to Egq. 2.15,

.221 = - 2.20
0z f1 ( )
with
—_ au' a 1 1 1 1 ’
fl = P +p ¥ (wu') - (F'-o'+u') . (2.21)

In order to- obtain quantitative results, the expressions for F', ¢', u', and
P' are required. What one uses for F' depends on the law of force between the
particles and the gas: Eq. 2.8 is merely the definition of F; the force of inter-
action is required in order to determine u, and hence u} and F'. That problem
will not be discussed here. On the other gand, o, and to a lesser extent u, are
central to later discussion. It is a straightforward matter to find o', and u':

Y - 1 1 ' t | m (P) t Yo
o' = g—c- [u j'mbdq+ up‘rmb dq] + (u‘-up)wp (2.22)
Q1 Jm, dq + (u ) jm, dql 3
u' = 5. s )myda + (v ) fmydo] (2.23)
The terms
(p)

iji’dq , Epm.b 'dq , (E-'ﬁp)w;)
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and similar terms in u' are dropped as higher order contributions. The reasons

are : my, and mp(P)*' are of order u, as shown by computations of the combustion pro-
cesses at the surface, and (U-G_) is a small quantity because the particles may be

assumed, usually, to be sufficigntly small that in the steady state they very near-
1y follow the gas motions, <o that (u-Gp)w' is in practice a negligibly small ternm.

The terms

1
(up-u)F , ulc-y) , (epo ‘T)“b

also produce fluctuations of higher order (see Ref. 4 for a discussion of the first
two) and may safely be ignored in linear problems. In the term a2/y + Aey, the

kinetic energy produces a second order term, and with aZ = YRT, one finds the per-
turbation

2 . = 1
[(a*+RAT ) myda) = yR(T+ET )i dg +vR(T+ 2L )[5 ag . (2.29)

It is assumed that the average temperature of the gas leaving the surface is equal

to the average chamber temperature, so AT = 0, but differences in the fluctuations
will still be allowed; one then has for Pj :

: = YR 1 1 AT P i ds
Py R frisar 22 ] 3 o

R —_— -
+= [elw +e w'+(Q+Q!)] .
C, “p"p %"p ( P)] (2.25)
The fluctuation T' is the isentropic value associated with acoustic waves in the
chamber, while AT' is a nonisentropic fluctuation associated with the unsteady
combustion processes (see Sections 6 and 8). This completes the preparations re-
quired for calculations of strictly one-dimensional problems.
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3. MODIFIED ONE-DIMENSIONAL PROBLEM

When calculations are based on the formulation of Section 2, variations of
area are treated as perturbations, a point which will become more apparent later
in Section 5.1. It is more accurate if the influence of nonuniform cross-section
can be accounted for in "zeroth order", and in certain practically interesting
situations this can be done without excessive difficulty. To do so requires only
relatively minor alterations of the formulation just covered. Formally, the
difference consists mainly in retaining the area S; on the left-hand side of the
governing equations.

3.1. GOVERNING EQUATIORS

The continuity equations for the gases and particles are retained in the
form in Eq. 2.1 and 2.2; the momentum in Eq. 2.2 is written (cf., Eq. 2.7):

pSc-g%-& puS —a—E+S Sp

¢ 3z cdz ° SC(F-0‘+u) . (3.1)

Similarly, the energy equation 2.1l is written as:

2
dT 3T . 9 a
pC,S. 3r +PCUS 55 +P s (1S_)= (3t de, )j‘mbdq+sc(up-u)F+u(o-u)sc

+Scwp(epo-eo)+(Q+Qch . (3.2)
One then finds that, corresponding to Eq. 2.12, the equation for the pressure is

3 9 2
2 (BS_Hyp o= (uS_)ruS_ SR = (%4 RATO)j‘mbdq+ER; S, [(u -u)P+u(o-u))

2
R u
‘ 'f--é—; SC [(epo--z—)Wp + (Q"‘Qp)] . (3.3)

3.2. LINEARIZED PERTURBATION EQUATIONS

The perturbation equations for velocity and pressure are nov

-9 ' — o —
3 (Scu') + Sc %;— = - pSc Bz {uu HSC(F'-G'ﬂl') (3. 4)
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U ap! K R 1
S o -vp' 55 (WS )+S Py, (3.5)

5 — 9
7t (P'S ) tYp 5 (WS) = c 9z

where ScP';; is the fluctuation of
2 R
SCP11 = (a ‘f-ATo)J‘mbdq+ 'E';: Sc[(up-u)F-l-u(o-u)] +

2

R [ u
TR S N -
C,  cl"po™ 2 )Wp Q Qp) (3.6)
Hence, the wave equation for the pressure fluctuations is found to be
2
1.3 g 8, 1L3p _ 3.7
s ez -2 -2 7 hn (3-7)
c a ot
with
h.. = "__62 au' _1_._6..[5 (F'-o'+4)] + ..E__")_.L.,..l?.Pi_l._‘_l_( )
n= Pz Wrs g - Zzot T2 0t S_ = -
d4nS P!
- 9 nw_ e 1 11
Ay = (3. 8)

The associated boundary condition on p' is exactly (Eq. 2.20) still, since the
momentum equation is unchanged.

While F' is still given as the perturbation of the right-hand side of
Eq. 2.8, and ¢' is correctly given by Eq. 2.22, P';; differs from P| because
the term ypudfnS./dz in Eq. 2.15 does not appear in Eq. 3.6. Thus, P';; is

given by

Pl

_ 1 =2 t ' 1Y m .&. 'w te w! ' ' .{3.9
hWeE la j.mbdqﬂyR.T +RAT )j‘znbdq}! c, [(epwp+epwp)+ Q +Qp)] (3.9)

C

10
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4, THREE-DIMENSIONAL PROBLEM: CLASSICAL ACOUSTICS

The analyses of Ref. 2 and 3 which are, so far as the discussion here is con-
cerned, the most general linear treatments availaile, arxe based on modified forms
of classical acoustics theory. The principal modifications are due to the pres-
ence of a nonuniform mean flow. 1In Ref. 3, the calculaticas were based on inte-
grals, of time-averaged quantities, over the chamber and i{ts boundary; the de-
velopments of Ref. 4 were founded on the differential equations. The final re-
sults, when comparable, agree exactly; but for present purposes, it iz vreferable
to work with the differential equations. Comparisons of the two appicaches will
arise in subsequent discussion.

4.1. GOVERNING EQUATIONS

In the differential equations for three-dimensional problems, no boundazy
sources appear explicicly, so one has for the conservation laws, instead of Eg.
2.1-2.4,

11388 9p L
(gas) et Vo (pu) = W, (4.1)
mass % -

(particles) Tt ) = (4.2)
momentum -% (pG—i—pp{ip) +V-(p;§+pﬁpﬁ‘p)+ Vp = O (4. 3)
9 - - -
snergy T (peo+ppepo)+ v. (Pueo+ppupepo)+v‘ (pu) = Q (4. 4)

The momentum equation for the gas phase is

b d

p I apd W ap = F.3 (4. 5)
where -
= [ _?::I.B 3. v (4. 6)
F = - + u - Vu ] -
Lot " PppT P

11
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and 3 = (a-1 4.7)
g = .
{u up)wp (

Consequently, the energy equation with temperature as the independent variable is

9T - - L T ™ JN
pCV 3 + pCvuo VT+pV-u = (up-u)- F+u. o+(epo-eo)wp+(Q+Qp) (4. 8)

and the equation for the pressure is

% B40.Vp = = [(a_-u)- F+u- O + +RTw 4.9
3 +ypV¥- utu. Vp cv [(up u)- F+u +(ep0--eo)wp (Q+Qp)] p ( )

Variations of cross-—sectional area of course do not appear explicitly; they enter
the problem when the three-dimensional differential equations zre solved in a
specified geometry.

4.2, LINEARIZED PERTURBATION EQUATIONS

In Ref. 3 the limiting process for finding the linearized equations has been
described. This will produce the equations usually used, in which terms of first
order in the wave amplitude and mean flow Mach number are retained. The sets of
equations already found in Sections 2 and 3 are essentially based on that proce-
dure, although they have not been so rigorously deduced here.

From Eq. 4.5 and 4.9, one finds the linearized equations for u' and p':

— -'I _: - -t - = —
p-—-——aa‘: +Vp! = -p(u- Yu'+u'. VEH' F .o (4.10)
"]aae’; +ypY- ' = a- Up'-yp'V- TP (#.11)°
with
R —_ -
P 2 —— fe! +e w' +(Q+Q') 1.
c [ bW, T e Q Qp)] (4.12)

The linearized wave equation for pressure fluctuations is

: 2
wp -:—fv_ ——%—aat' = h (4.13)
a

Y

3 Note that the assumption of incompressible mean flow, V-u = 0, is not made.
This is obviously necessary if there is residual combustion (w, ¥ 0), but it is
also a formal convenience for later comparison with the one~dimensional results.

12
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subject to the boundary condition, deduced from Eq. 4.10, for the normal gradient
at the boundary:

n- Vp' = -f (4. 14)
The functions h and £ are now
S z 121 9P
h= -p¥- (T V4 Vu )+ —%u a V-(F'-O'H-—Yz-%-V-u-zzr, (4.15)
a
- -y -t
£ = %llt—-ﬁrp‘(i. Vu'+u'- Yu). - (F'-0'). 0 . (4. 16)

As formulated here, the three-dimensional problem does not account totally
for all interactions between the wave motions and the flow issuing from the sur-
face. This can be seen most easily by examining the special case of one-dimensional
motions. The left-hand side of Eq. 4.13 is then identical to the left-hand side

of Eq. 2.18 but the right-hand sides and the boundary conditions in Eq. 2.20 and
4.14 do not agree,

With variations only in the z-direction, Eq. 4.15, 4.16 and 4.12 give

2 2 u

s 18 y op' da 1 8P

h=-p— u)t Wbt tay (Pt —Z ot & " =2 ot
z a.

f=20

R
P = -C—:’- [ePWP‘*'epW;)"‘(Q"*'Q’ )]

These will obviously not reproduce the one~dimensional problem discussed in
Section 2. Indeed, there is no possibility here of representing any coupling
with the burning surface. The reason, of course, is that in inviscid classical
acoustics the only boundary condition is placed on the velocity fluctuation
normal to the boundary--this is simply zero, always, for one-dimensional problems.
It is mainly this difficulty which motivated the work of Ref. 4. Modifications
of the inviscid three-dimensional problem consist of approximations to the pro-
cesses occurring in boundary layers presen. in the real problem.

However, the case of truly three~dimensional motions with significant com-
ponents parallel to the boundary surface has not yet been treated. This is re-
ferred to here as the "modified three-dimensional problem"; it is treated in
Section 6. As an aid to that discussion, it is useful first to examine some more
detailed results for the stability of harmonic motions.

13
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5. CALCULATION OF THE COMPLEX WAVE NUMBER

FOR THE LINEARIZED NATURAL MODES

The normal or natural modes for a linear system are characterized by harmonic
time dependence; all fluctuations vary as exp(iakt) where

ak = o -ia (5.1)
is the complex wave number. If the growth constant o is positive, then the ampli-
tude of the waves grows with time. Now for a linear acoustic wave, the energy
density is the sum of potential and kinetic energies:

6 — —02
e, ;(:B-_’z- +3p(ou)”. (5.2)
pa

Here, 6p, Su are written since they must be real quantities to make the energy
real.

All phases in time are referred to the pressure oscillation; for harmonic
motions, then

p' = eut elwt

oy

(5.33)
o= ‘{ieat =e1(wt+¢) (5.3b)

where ¢ is the phase of the velocity fluctuation relative to the pressure fluc-
tuation.

In general, both p and u may be complex functions of position, but
suppose for the present that they are real.

L Then the real parts of Eq. 5.3a, b
may be used for 8p and Su in Eq. 5.2 to give

- 2 - a2 2 -! Zat
e, = L—Z-fq cos wt+ = p(u) cos (wt+¢)_ie 5.4)

and the time-averaged value is approximately

% One could of course introduce complex conjugates and write

——2-2 PP +iput. w*,
pa

14
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a2
- 1 ~%2
€a T Z(_;)%- +pu )e2at . (5.5)

The time average here is over one cycle of the osciliation and is valid only if
the amplitude of the wave doesn't vary rapidly: a << w. It follows from Eq. 5.5
that the growth constant is related to the rate of change of energy density ac-
cording to
de

a

20 = =g - (5.6)

Gllm

a

For interpretation of later recsults, it shouid be noted that Eq. 5.6 can be inte-~
grated over the entire volume of the cavity, showing that 2a equals the fractional
cate of change of the total time-averaged accustic energy in the cavity.

The linear stability of the normal modes depends on a. It is easy, following
the development first given in Ref. 3, to find a formula for k? which can be eval-
uated using the classical acoustic mode shapes. The wave number for each mode is
known to first order in the perturbations (i.e., to first order in the mean flow
Mach number) when the modes are known to zeroth order. Those are the modes for a
closed chamber with no combustion and having rigid walls. This is a well-known
characteristic of perturbatiun expansions of the sort used here.

On the other hand, the actual mode shapes in the chamber will be distorted
from the classical modes by terms of first order in the mean flow Mach number.

Moreover, they will be complex quantities of position, which means that the actual

pressure and velocity fluctuations will have phases varying with position in the
chamber. All phases are measured relative to the unperturbed (classical) acoustic
pressure oscillation. Thus, for example, Eq. 5.3a then becomes

i(wtid )
P = Bl e P

with ¢, a function of position. The actual energy of the wave, Eq. 5.2, will also
depend to first order on the mean flow Mach number. These refinements are of no
consequence for the first approximation to linear stability.

5.1. ONE-DIMENSIONAL PROBLEM

With the exponential time dependence, all fluctuations can be written in the
form p' = p exp(iakt), for example. Hence, Eq. 2.18 becomes

24
d 2a
-—% + k = h 5.7)
dz P 1

with the boundary condition at the ends set by Eq. 2.20:

15
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dz (5.8)

In the absence of combustion, Eq. 5.7 and 5.8 beccme

2a ds
d 24 N —a 1 [
thyp = -WkPUE g (5.9)
dz c
dp -
_B = 0 (Z = 0, L) (5.10)

Equation 5.9 exhibits explicitly the contribution of nonuniform area alone,
when there is no combustion or average flow.

The procedure for finding an expression for the wave number involves essen-
tially a comparison of the problem of interest, including perturbations, with
the problem having no perturbations. The latter is simply the classical acoustic
problem for a straight tube, governed by the differential equations

24

d p
) 2~ _
— +1 By = 0 (5.11)
Z
dp
L _ =
—a—z— =0 (Z—O,L) (5.12)

To find the first order formula for kZ, multiply Eq. 5.7 by 5 » Eq. 5.11 by ﬁ,
substract the equations and integrate over 0 < z < L. After use of the boundary

conditions Eq. 5.8 and 5.12 one finds

L L

2 2 1 a ~

k = k«t, +—E-:-§ { gﬁlpl,dz + [flp{,]o } (5.13)
4

where
L L
EX = [$Paz ~ [P, dz . (5.14)
1 6 o *

All terms in h; and f; contain the Mach number of the mean flow as a factor (see
Ref. 3 and 4 for further details). That is, all perturbations of the classical
problem are small, as necessary for the calculation to be valid. Hence, it is
gufficiently accurate (i.e., to first order) to replace p, u everywhere in

hy, £; and EZ by p, and d,. The right-hand side of Eq. 5.13 may therefore be
evaluated. To do so, it will be necessary to use the relation for the acoustic

velocity,

16
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. ap

-~ - 1 L .

u" = — H - (5.15)
pa.kL

With (2. 19) for h = ﬁ exp(ikat) zﬁ e;:.p(ik at) ,

L dp L dp k, L , ~
N A be ~ d {, .{, . & 4\2 du _
! Pxﬂ“':‘"[s Pp 3z ’]0““‘ Rty d""”?{&";d"
L a
f_; dp’; ‘ A oaia -L
Plp»{, - d (F W LYY )--——- dz+! ==(F -6 +0 }P’,J (5.16)
a cc 0
and with (. 21) for £, = fx explix at) .
L S, .L . L
s A “be i be 3 be A A A
t.p,1 =ipak 4p + = ——-u ) -——(F-o+u)p]
1727, L\_- Lsco]o ak, \.sco dz ‘" dz ] [ 1y
(5.17)

The area Spe has been introduced as the 2rea ot the end of the chamber over which
‘u' differs from zero; this may cceur usually at a burning surface or at the en-
trance to a nozzle. Addition of Eq, 5.16 and 5.17 produces, after some further
integraticn by yarts:

'Gf;‘?‘ S k
23 0k2 - e, @ B 2 be‘ 4 Fa2du
(k 'kl,) L= LL QB F -——-2— )-=-——- H.(y 1)—= . L'Eidz
co fa a
T (F ):16 dz g {5.18)
el (F 6"'3' rcyen — J P dz - e
0 N T
With Eq. 2.20 and 2.21 one finds
L ap . Ladap, 2 L & .
n 4 __d L. p— 4z ~ L 0= (p), <=z
O'Edz_—-—— g(E‘jmbdqs +6Yup-&'z_j‘ b 99F
P 1, c . c
L, . - 4,
+ ] @-u)w —=dz (5.19)
) P p dz

17
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w Ew )+(d-+Q )ldz . (5.20)

The -1 part 6f (y-1) times the second integral is combined with the first inte-

gral in Eq. 5.19, while the y part is rewritten by use of the continuity equation
for steady flow:

w
- -2 (5.21)
P

Then the formula for k? has the final form
—.2

L
(k2 kZ)E2 1p ak{l[<up£ f-z%-) be] -iak Ip{‘j‘m dqs }

PP PP

k L vk dp

.4 R A A - "' dz i LA AL - AOA — P*
44— = j‘p [(e_w_te w )+(Q+Q )] —_— ‘]Lp W dz+f(u-u —— dz
{ a cv 0o ! c pa 0 1'p 0 pp dz }
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k L dp
. An p— . dz f’"» P 5.22
a C

The various contributions have been grouped as shown according to the following
general interpretations:

(:) These contain all terms representing the response of burning
surfaces (4 is related to the admittance function and mp to
the response function). In addition, the influence of a nozzle
at the end of the chamber appears through its adaittance func-
tion (the u term). The term up2 represents the convection of
acoustic energy, by the mean flow, through the end walls. It is
an energy gain to the wave system because it represents the addi-

tion of energy by the inward flow after the flow has acquired
the acoustical motions.

(:) These represent interactions between the mean gas flow and the
acoustic field. The first term represents an energy loss for
the waves in the chamber. It is due to the inelastic process
by whlch the incoming flow acquires acoustic energy. Note that
pi + k. (dp;i/dz)2 is proportional to the volume densitv of
acoustlc energy. The second term is the net (averaged) work done
by the acoustic pressure against the mean flow. The third term
shifts the natural frequency. Its interpretation is not obvious
it arises from the term yp'u d&nSc/dz in Eq. 2.25.

AR R R R

e
bl AL

(::;l The first term is associated with the addition of particles from
the burning surface, and the fact that they must acquire the

locai fluctuating motions. The seccnd term represents the influ-
ence of particles distributed in the volume of the chamber and

hence contains, partly, the attenuation of acoustic waves by the
particle/gas interactionms.

P o
Mt SR 1

All these terms vanish if there 1s no residual burning within the
volume. Those containing w, or w as a factor are present only
when there is burning of sogld (or liquid) particles. The first
term is associated with energy release and the second term repre-

sents a source of acoustic energy due to the distributed source
of mass.

®

" - "
i e AR a0

(:) This represents the effect of temperature fluctuations at the
combustion zone, which are nonisentropic. Hence, it arises due

to the production of entropy, ard part of it is an energy loss
for the acoustic waves.
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(::) The last term represents the effect of momentum fluctuations at
the boundary layer when the axial components of momenta of the
gases and particles entering differ from those of the gases and
particles in the bulk channel flow.

Some of the above will be interpreted in more detail later.

5.2. MCDIFIED ONE-DIMENSICNAL PROBLEM

The calculation of the wave number goes through in the same way: the only
major dixference is that the unperturbed or zeroth order equation must now corre-
spond to Eq. 3.7, which, for harmonic motions, is

$=hy, (5.23)

by

dp
1 d LA 24
— — —— 4 = 5.24
Sc dz(S dz )i kLpL 0 ( )
dp
t (5.25)
dz 0

Now multiply Eq. 5.22 by Scpg’ Eq. 5.23 by S p and follow the prescription out-~
lined above to find

) L,
2 _
K {‘g 118,592+ [£8,S ]j (5.26)
where now
2 a2
E], = J(;pLS dz . (5.27)
The definitions in Eq. 2.21 and 3.8 of f; and h;; lead to
0212 )E], = 53k, | (@5 R s, ]L+i( 2 f"z d & )a
i T Pyt = '2 o VU= Py g (95
L dﬁ k, L
a A 2, R A LS
-j‘o(f‘.om)—dz Scdz-xt_;-j(; P,,P,S dz (5.28)
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The integral over ¢ is like Eq. 5.19 except that dz/S; is replaced by dz;
that involving P;; is

x, L. _
- —_ﬁ ij)‘ nﬁ 5.4 = -iak Tp &Imbdqdzq(y-l) I j‘mbdqdz
a

IEL R L - ' 2 2 ]dz
s N ~ A — = A +
1_5 G d"p‘&[epw;epwp (Q‘+Qp)
v
k, L . .
-i:—Rj(;AT By Jm dadz . (5.29)
a
Thus, Eq. 5.28 becomes
) @
L
(kz-k E l[ up,+---1—)Sb J -iak XPLJInbdqdz +
k L dp, 2 k, L., 1 4
. 1 2,1 Ly= = - > _
it 2[5 () 1]mydad = ‘!‘o 15, %6 a5 4z}
PR @
dp L, dp
-~ L r= (p) _r dz
(e, % e o B 0]
k L @ ky L_ R dp,
s L R Tsreawsew+ S dz+i—— | w p°S dz+| (A-u_Jw_—=—
+{-1-—£ vay L[epr-*epwP (Q+Q ) 13% pPL c gd p dz "¢ }
-:_lt- RfATpLj‘m. dqgdz - fLu < Scdz (5.30)
a

The interpretations of the various terms are the same as those listed above.
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5.3. THREE-DIMENSIONAL PROBLEM

The calculation now centers on solution to Eq. 4.13. The unperturbed problem
is described by

~ 2aA
VZPN + k{‘p =0 (5.313)

8. 9p = 9 (5.31b)

where M stands for three indices, one for each dimension.

For harmonic motions, Eq. 4.13 is

s +x% = b (5.32)

with the boundary condition
~

n-Vp = -f . (5.33)

Now multiply Eq. 5.32 by 5 s Eq. 5.3la by p, subtract, and integrate over the
volume of the chamber. Af§er use of Green's theorem and the boundary conditioms
in Eq. 5.31b and 5.33, one finds

K = kZN +-i:12- {fﬁNﬁdv+ ﬁ f ﬁNdS} . (5.34)
N

Again, of course, this result is valid only to first order in the Mach number gf
the mean flow. Thus, in h and f one must use the zeroth order approximation, p_,
to the mode shape (cf. remarks following Eq. 5.6). Here, Eﬁ is

2 a2
Ey = [Byav . (5.35)

The acoustic velocity is now given by the formula

~ 1
= Wy - (5.36)
N paky N

Hence, with a given by Eq. 4.15, and £ by Eq. 4.16,

5 ave i e g @aves N p= a2 K Lo = 25
Japyav = - f;; I8y 7- Cav+i = Ju vy dv+i -l?_l- j‘pfqv- udv+ [ V- (F-5 )av

S

iP5 av (5.37)
= [Bpy
§5 5,45 = ipaky §Pé. ﬁﬁNds+§1i-;§§ﬁ. Epyds - & (F-O)pyas
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where N
u (5.38)

+ 7 - R
C=u-" V(VPN)+VPN .

All terms in E can be combined to give an igteresting simpler result as follows;
since in Eq. 5.34 the integrals over h and f must be summed, one encounters the

following combination:

i [p. v Cave— (B4 Cp as
= N = N
aloy aky

- e @ Crave— [C vp av+ ;i— ¢f
N

ne EdeS

i @55, C-fas+ 2 [C wpav+ L @fa Epas .

aky

The first and last terms cancel, while the second one can be rewritten.

- -

[u. 995 N)+ va- Yu]- By

-

1]

E By,

V(u-Vp_ )- V5. _XVXul. 95
[v(u- v5) By ul- VB

1]

= Vpy* V(u- Vby)
= Ve D(3- BB J-(3- ) VPhy

- -

= V- [ BBy 1+ klp 4- By -

Consequently,

—_— 1 Ie—Vﬁ dV:_i Iv- [(%‘Vﬁ )wﬁ ]dV+i-liN.- %.vﬁ Zdv
aky N kg NN 2a Jovby

i e Una g » 1CN’ : a2

= ,” (u VPN)VpN- ndS+i-: j‘ u- VdeV .
2a

ky
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The first iutegral vanishes because of the boundary condition in Eq. 5.31b, while
the second is. exactly equal to the second term in Eq. 5.37. Then since the mean
flow field is not assumed to be free of sources,
k - -
. — a2 . LaAl— a . -
1—1Sj‘u- Vp,, AV = 1.]E @p u- ndS-:.—kl!Iﬁz -udV .
F N a0 N a N

Hence, after a few other simple manipulations, the formula in Eq. 5.34 for the com-
plex wave number can be written explicitly as

6

o a3, up .
(kz-klz\I)El\? = ipakNﬁLu pN-l-:_—lg ]- ndS - & }
pa

@
kN

- i_—:-j'ﬁﬁ 'EdV}

=%

®
+1

I

( s,
+1 -JF - vpav

©

3 +{ ! j'“ [& w e w H(Q+Q )]dV+i A j'“z"' dv i
= =T PN P e pl =7 YPNT
- +% (65 )- vpyav}
® @
i ® i ®
(5.39)

The various contributions have again been labelled; a few blank spaces are purpose-
ly indicated for comparison with the one-dimensional results. Apart from the in-

clusion of residual burning in the chamber, Eq. 5.39 is the same as a result ob-
tained in Ref. 3.

AP B P

S >
S In this term only, V + @ has been replaced by w_/p, by use of the continuity

in Eq. 4.1 written for the mean flow. This substitutign aids comparison with the
one-dimensional result.

T
St
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These results for the complex wave numbers will be discussed further in later
sections. First, however, they will be used to motivate a fourth formulation of

the analysis of instabilities.
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6. THE MODIFIED TEREE-DIMENSIONAL PROBLEM

At the end of Section &, it was noted that the classical three-dimensional
formulation does nct, reduce e the one~-dimensionsal results covered in Sections 2
and 3. Moreovar, it is not pessible, within the strict three-dimensional analysis,
to handle coupling at the boundary when the main wave motions are parallel to the

boundary. ioth of these difficulties are removed by patching the three-dimensional
analyssis.

The essential point is that the one-dimensional formulation® implicitly
accounts for viscous processes voccurring in the flow adjacent to the lateral boun-
daries. If those terms correctly representing boundary layer effects can be iden-
tified in the one-dimensional ayaiysis, then they may be incorporated in certain
results of the three-dimensional analysis.

Since the differential equations for the one~dimensional problem contain these
boundary terms (e.g., those terms involving my, and mb(P) in Eq. 2.1-2.4) while the
partial differential equations for three-dimensional problems do not, it is neces-
sary to establish a connection elsewhere). In the present work, it is convenient
to compare the formulas for the complex wave numbers in Eq. 5.30 and 5.39.

The problem comes down to determining what terms of Eq. 5.30 repruseat genuine
boundary effects and should therefore be included as surface terms in the three-
dimensional result in Eq. 5.39. Resolution rests on correct interpretation cf the
various integrals. Comparison shows that the ¢ne-dimensional result in Eq. 5.30
contains six terms more than the three-dimensional result in E£q. 5.39. These are
numbered in Eq. 5.30 and will be coasidered in ruxrn. It must be emphasized that
the right-hand side of Eq. 5.3C represents the various contributions to rates of
energy addition to acoustical motions entirely parallel to the lateral boundary,
while the mass addition (my, @My, etc.) is occurring mainly normal to the surface.
Deviations at the surface from motion normal to the surface are represented by m
and u. It should also be noted that in all terms, one factor p,, or in some cases
dﬁzld;, is present because of the spatial structure of the acoustic mode. Thus,
for example, a process which couples to the pressure fluctuation is most effective
where Py is large. The numbered terms in Eq. 5.30 have the foll_wing interpretations.

The difference betwecn the formulations of Sections 1 and 2 lies solely in
the way in which variations of area are handled. This is of no consequence for the
present discussion, so the two analyses will be referred to together as the cne-
dimensional formulation., It should, however, be emphasized that the modified one-
dimensional formulation produces more accurate resultc when the cross-sectional
area varies along the axis of the chamber. The results of the two formulations of
course agree for the case of constant area.
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@ and(@ . This represents the direct influence of fluctuations of the mass
flux from the lateral boundary. It arises, of course, due to the coupling between
the acoustic field and the_combustion processes at the boundary; it should be com-
pared with the term ipak [upzsbela vhich represents the corresponding interaction
at the end surfaces where there is no component of acoustic velocity parallel to
the surface. 1In the latter case, the driving of the waves is proportional to the
velocity fluctuation.

The difference between the two situations may be interpreted as follows.
When the surface is oriented normal to the wave motion, motion of either the sur-
face or of the gases leaving the surface produces p-v work: it is the rate of p-v
work, proportional to the velocity, which matters. But suppose that the surface
is oriented parallel to the wave motion, The influence of fluctuations of the
flow leaving the surface is not now as an agent doing work on the waves, but as a
mechianism for locally increasing the pressure of the acoustics wave. The origin
of this term is a2 f mydq on the right~hand side of Eq. 3.3. It may be recalled
that Eq. 3.3 is the result of adding R/Cy times the energy equation (Eq. 3.2) to
RT times the continuity equation (Eq. 2.1); that step produces the source term

R -
[_(T‘;(hos-eo HRT][m dq = [YRT+RAT )| m, dq .

There are, in fact, two perturbation terms arising here, for

(az‘fmbdq)‘ = EZIm.qu-l'(az)‘j‘;ﬁbdq = Ez‘fm'bdq-i-yRT"fr-xibdq
= zzj'mi’dqqfa-z(y—vt}-)g Iﬁbdq . (6.1
p

If only the first term is taken into account on the right-hand side of Eq. 3.5,
one has

9 — 0 —2
_a_t(P:Sc).;.Yp_é;(uxsc) = a ‘fm_;)dq . 6.2)

Thus, the term in question appears as a source of pressure changes.

As an aside, it is instructive to examine an approximate means of determin-
ing the contribution from a from Eq. 6.2; differentiate Eq. 6.2 with respect to
time and replace du'/3t by the approximation

au"k _ 1 .QE:

2t E; 2z °?
% 3% @p's ) om!
2 - p' _ _
_a_z (p's )3 —5= = azj‘—;;"i dq ~ {2k, [ midq . (6.3)
ot 0z

Now suppose S, is constant and note that for standing waves,
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so Eq. 6.3 gives —
2 2.4 laky .
(k -kL)p ~ -3 fmbdq .
c

Now multiply by p' and integrate over the chamber to find

2 2 2 ik Lo,
KXy B, ~ —— J;pLImbdqdz ,
[ o4

which is exactly that exhibited in Eq. 5.30 for S; constant.

The point is that this term involving m; is a source term associated with
turning of the flow at the boundary; it should therefore also appear in the three-
dimensional case. However, it should be present only when there is a component
of the acoustic velocity parallel to the surface. To see what should be used in
the general three-dimensional problem, it is helpful to contrast the two cases
which have arisen in the one-dimensional problem. The contributions to (kz-kz)Ez,

" o o Il b PR
A U ) 0 5 b Aty l,‘vw P U D

per unit area, for the direct coupling between the acoustics fiald and combus%ion
are
= no acoustic velocity R
E parallel to the -ip ak‘t’p pu-i—up 1 (6. 5a)7
: surface a ’
z acoustic velocity — . . k{ . .
only parallel to -1akLmeb-1 — RpLA Tm, . (6. 5b)
= the surface a

oA
I L

It should be recalled that the acoustic velocity referred to here is that of
the classical unperturbed acoustic modes. At the surface itself, the normal com-
ponent is always zero for those motions; the v in Eq. 6.5a and mp in Eq. 6.5b are
the small fluctuations normal to the surface due to coupling between the acoustic
field and combustion. Term has also been included in Eq. 6.5b since it is

also, obviously, associated with coupling at the boundary; it too comes from the
source term (a? + RAT,) S mpdq.

LR

BT ol P b e

. 7 The minus_sign arises when the first term in Eq. 5.30 is written out; e.g.,
[upgsbelb = (SpePguly, ~ (SpePu),- At z = 0, u is positive for flow outward from
the surface, which is the convention followed in Eq. 6.5a and 6.5b.
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The question which must be faced here concerns the correct form of the coupl-
ing terms when the unperturbed acoustic velocity in the vicinity of the surface is

neither purely normal to the surface [case (Eq. 6.5a)] nor purely parallel to the

Several different arguments have been examined, but it

surface [case (Eq. 6.5b)].
By

appears that the desired result can best be obtained in the following way.
definition, the fluctuation of mass flux, m = pu, is

(6.6)

6.7

By use of the perfect gas law, the density fluctuation--which here is at the edge
of the combustion zone--is
p T
’=f? = (6.8)
P

The temperature fluctuation can be broksn, as earlier, into two parts: that asso-
ciated with the wave motion outside the combustion zone-~the isentropic fluctua-

tion--and the nonisentropic part'

T AT _ y-1p . AT
= (“"‘) t Ty ot (6.9)
T ‘is, T P T
Thus, the density fluctuation is
5 135 AT
‘.“i‘ = ;,”E‘ - = s (6.10)
p p T
and Eq. 6.7 becomes
Y N — l“ »
u=*i- —ub;'_g+:m':\'_;‘AT~ (6.11)
p T

The last result is, of course, always true, irrespective of the character of the
Now substitute this into Eq. 6.5a to find

k

acoustic mede.

P YP 9'1‘ a

The convection terms cancel, and thes result is
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no acoustic velocity k 1
parallel to the -iak,p,m -iy = Rp ATm 6. 12
surface et g PO ( )

which should be compared with Eq. 6.5b. Thus, the only difference between the two
cases is the factor y in the nonisentropic term in Eq. 6.12.

Now for the general case, the acoustic velocity of the unperturbed acoustic
field near the surface is partly parallel and partly normal. The problem of
representing the surface response in this case is discussed in Appendix A, where
it is shown that Eq. 6.5b and 6.12 should be weighted respectively by factors
81> 5;* such that §) + 8 = 1; in the limit of no parallel velocity, 6y = 0,

5; 1, while if the acoustic velocity is entirely parallel, &) =1, 61 = 0.

These weighting factors are related to the mode structure as shown in Appendix A.

The discussion there breaks essentially into two pieces: a detailed examination of
a general acoustic mode in the vicinity of a rigid surface; and a "proof" for the

representation of the ccupling in the general case (Eq. A-15).

The conclusion of the above argument is that the missing terms (:) and QB
in Eq. 5.39 are accounted for and combine with the surface combustion terms al-
ready present, in the surface integral

-taky ﬁﬁN[Iﬁb +%7—: aT(sy+y6.)]ds . (6.13)

The remaining boundary terms in Eq. 5.30 will be incorporated in the three-
dimensional problem in a similar way.

2 ., This term represents an energy exchange associated with the acquisition,
by the average inflow, of the local acoustical energy. Again it appears as a
source term in the one-dimensional problem and is present only if there is a com-
ponent of acoustic velocity parallel to the surface. Hence, the corresponding
term for the three-dimensional problem is

_ﬁq:@ [ﬁl\? +—ki§ (VﬁN)z] &ym, dS . (6.14)
a
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(:). This term representsg an energy loss associated .with turning of the
average flow of particles into the chamber from the boundary. The corresponding
term in three dimensions is evidently

L dp .
a 4 — (p) BT Les = (p,
g[up_&?'rmb dqdz @up ON™ 61ds . (6.15)

This term iavolves fluctuations of the inflow or outflow itself, paral-
lel to the boundary. It can therefore be taken over directly to the three-
dimensional problem. At the burning surface, both u and || may reasonably be
taken to be zero--i.e., the flow is assumed to depart the surface in the normal

Jdirection.

All of the preceding arguments lead to

(22 e = iy $ by lihy, + =52 AT (B14y62) Jas}
a

N . 3
. * ~ 2 ~ 2 — N a 2 —
i N 15241y (w5 opmyas-iN [55v-uav}
pa qu a

+{§Hp - By Buimds- [ F 95 qdv}
N R pa oo T 8 a8
+ {_1 —'zs By [apwp+epw (@G )lav

k
+i

NY ra2- _ &5 )vp AV
- IPN“%dV+I“bh1up N }

- ﬁ[au;ﬁb * ‘-;p"ab(p)]. VHNIS - (6.16)

This is a new result; in later sections it will be applied to some specific
problems. It should be noted first that because of the way in which Eq. 6.16 has
been constructed, it reduces exactly to the modified one-dimensional result in
Eq. 5.30, Also, it should be recalled that some of the boundary terms have been
combined and written in a different way. The modified one~-dimensional result
corresponding exactly to Eq. 6.16--i.e., if Eq. 6.2 is used in place of Eq. 6.5--1s:.

m L

- ~ o Rm A A
-k} )E?; " {53k, [ 0ty -EZB ATpL)Sbe]o
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L
-iZkL(J; B, [ [ da+ & j'ATE;bdq]ds}
: a

oz (55 () Do
pa

-i%j‘ B2 —;—;g—z— (35 )S_dz

+{ jﬁp i% [m, Plagda- gLﬁ d—;zi' S dz}

+{-i%‘—%jﬂ!,[épv_vp Epwp+(Q+Q )]S dz+i 1::: J:ﬁf;pscdz
+f(ﬁ-ﬁpﬁp% Scdz} - gLﬁ % S dz . (6.17)

In summary, it is perhaps helpful to emphasize what has been accomplished.
What is eventually required is the formula for the wave number of three-
dimensional oscillations. But the purely three-dimensional formulation, for
inviscid flow, fails to contain certain contributions arising essentially from
the flow in a boundary layer. Strictly, those contributions can be found only by
actually solving the boundary layer problems. However, the one-dimensional form-
ulation affords a means of determining approximately the desired results. The~~-= .
accuracy of the resulrs cannot be established using the procedure followed here.

The idea is usefully illustrated by a more familiar example, the attenuation
of waves due to viscous forces in the acoustic boundary layer on the wall of a
tube. This 1is usually found by computing the energy dissipation in the (linear-
ized) acoustic boundary layer. For a standing wave in a circular tube of dismeter

D, the contribution to a is

a = -%JW(1+X—:-_L; | (6.18)
VPr

where v is the kinematic viscosity and Pr is the Prandtl number. This result is
based on the assumption that the boundary layer is locally one-dimensional, with
the velocity at the outer edge equal to the total acoustic velocity.

On the other hand, there is a displacement effect of the boundary layer,
which can be tzken as the basis of a different calculation which has been worked
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out by Chester. Because the fluctuation of velocity varies along the axis of the -
tube, 3u/dz # 0, preservation of continuity in the boundary layer requires that

the velocity v, normal to the axis, at the edge of the boundary layer, be non-zero.
If the acoustic equations are written in one-dimensional form for the cross-section
of the tube bounded by the edge of the boundary layer, then one has Eq. 2.1-2.4
except that there are now no particles, no combustion of any sort, and the cross-
sectional area is fixed. The only difference from the usual one-dimensional equa-
tions is a source term in the continuity equation,

i) 0 1
-55-}'5;- (pu) = -§<-:- 'I\vadq=SJ;- AL (6.19)

There is, of course, no average flow inward, so vy has only a fluctuating part.
Chester has computed vy by analyzing the boundary layer flow, and the linearized
form of Eq. 6.19 is

/- )2

-_du' - v
ot 0z D w —
JP o ,Jg
while the momentum and energy equations are simply
— ou' | ap’
PR - @2
- 9T, P ouw _ )
Pt B = 0 (6.22)

It fellows that the wave equation for the pressure fluctuation is
2 2
3_51-.}_3.%_' - 13w (6.23)
oz -52 ot y ot -

For harmonic motions having complex wave number k, the procedure used in
Section 5 then produces the formula for a standing wave in a tube,

i «‘Jr Py 2 .2
Jdw ] . w}" o (6.24)
3 —1—':2—* = kL-lyL onLdz .

g‘p{fhz

k2=k

™~ N

The imaginary part gives the formula for a,

o = _—_2_ (‘w(r"‘ dz . (6.25)

YL §
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Now for a standing wave,

" ik iw, t

u = -—=e sm(kl’z) .
pa

9u wL iw,t

3z - iz e cos(k,z)
pa t

and

Lt G5 S ( -1\ ke
w = we S VA (R oL —> Jcos(k,z)e o€ 4o )
D w ;Jfﬁ;)(pii ) L ‘g JE

of which the real part of ; is
4y ;
v»;,(r) - ___z!’_,/.\.’. (1 +J_-—’_1_-)(%)cos(kxz) .
2p T JPT L ’

Since 52 = cos(klz), Eq. 6.18 gives
o = -%Y-va'; @ +-‘l;1—) . (6.26)
‘ JPr

This differs from Eq. 6.18 only in the replacement of Vi by 2/y. For air
(y = 1.4) the error is very small indeed--much less than can be measured, in
fact.

Although a boundary layer analysis was used to evaluate v}, in Eq. 6.19,
this example does show how a one-dimensional formulation with sources at the
lateral boundary may reproduce a result found wholly by a boundary layer analysis,
i.2., that give Eq. 5.18.
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7. A FEW REMARKS ON 1NTERPRETATION

In Section 5, Eq. 5.6, the growth constant o was related to the rate of
change of the time-averaged total energy in the chamber. It is helpful to inter-

pret the formulas in Section 6 in that way. The real and imaginary parts of Eq.
6.16 are

2 m .
(2 2 = {a § oy ) R::b 2854y, )1as)
+{ & ﬁ‘;" ). v sumPlas- | & )- v av}

+{_‘“.f pN[e w?w‘ep\nrp d (i)+ég))]dv

_ SHa ) |
+‘f wp(u-u ) . VdeV}
- Gér)ﬁép) 1- 9By dS (7.1)

‘“é’? Elz\l = ’{EI‘N & I E Ny (=) T( )(ﬁuws.ﬂ]ds}
{'::z & oo+ —z- (VBy) ]éxxmbd5~]—;N—fﬁ§ .5av}
kN

+{ @}& @), Vi1, dS - [ v;‘ivdv}
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KN R pa palr)=— — »(r) *(r) ('
= == [P [& fe W " +(Q )yjav
{ 3 CV IPN P Wp p

_ _ as @)
_2}_ fﬁliwpdv + j‘wp( u-up) . VdeV}

- @ G R GEP 1 v as (7.2)

The fact that 3N is pure imaginary (see Eq. 5.36) has been used in Eq. 7.1 and
7‘2.

It is mainly Eq. 7.2 which is of practical interest, and especially the
first five terms representing the coupling between wave moticns and combustion,
and the mean flow/acoustics interactions. In order to clariiy the meaning of
these terms, it is helpful to express a as the ratio of the rate of change of
acoustic energy to the total acoustic energy in the chamber, as in Eq. 5.6.
First note that El is proportional to the total time-averaged acoustic energy in
the chamber. The instantaneous time-averaged energy density, with the time
factor dropped, is:

a2
P A
- 1 N -2
- = 7.3
eN_4(_p—_Za +puy ) PN+KN (7.3)

where Py and Ky are the time-averaged densities of potential and kinetic energy.
Hence, the total time-averaged energy in the chamber is

e

"

N II[—’TZ +F-‘i1\?]dv

n

HI LpN+—Ng (VpN) 1av = j‘(PN+KN)dv . (7.4)

Now by use of the wave equation for ﬁN,

Jwsfav = [v (B "By MV - [ B T AV

§ By Aas + 17 [52av .

The first integral vanishes according to the boundary condition on pN, so that the
normalization integral Ez is related to the time-averaged total energy in the
chamber according to

E2 . =2
J Py 2av = Ey = 253 &y (7.5)
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THe formulas for the one-dimensional formulation are entirely analogous, giving,
for example,
2 — e

a2
prScdz = Ell, = 2pa 1 (7.6)
with the time-averaged energy density
B, 2
3 - [} -~ (7.7)
= =%
ez % (gzz' + 0 uz )
By taking the imaginary part of Eq. 6.17, one finds for the growth constant
3 in the one-dimensional problem
wE2
W L
-ed—3—= =
a
5 (r),, Xy -
' — S AT Tia
E akx,{ [( P N2 aft )pl,]()" JL P;,Umér)d% =3 AT(r)mbdq]dZ}
& a
k L as, 2
E L{1F [.\2 1 ( Py,
FTAZ P —d—z—)]*rmbdqdz
] L.23 4
- p, & 3z (8s)S _dz
f% .‘(; L Sc dz c
4 L . dp ap
[FaG) 52 p=(p) 2(i) F1
+Lj(;up Ej‘mb dqdz f F —a—z—S dz}
k L
1 R taralr)s = alr) () ~(T)
+—=1-= [e te w' '+ + s d
z{ Cv% '8 Wpteptp QT QOIS dz

L dp
+yj(;13l,zw S dz+jﬂ ((r) “(r)) p‘LS dz

j‘ [_u“( )j‘m dq+u (l)j‘ (P) ] - dz {7.8)
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To see what the various pieces mean, it is best to replace Eﬁ by use of Eq. 7.4,
E%e by Eq. 7.6, and use the fact that -2a is the fractional rate of change of time-

averaged energy in the chamber (cf., E3. 5.6):

5 1de
e = Tat

(7.9)

For -2afy and -2agy, one finds the sum of terms shown in the following table.

TABLE 1.

208
20.&

- Z(},BN

— L

a P b ~ -!

;1: [p:u(mlgr )”“ att) )Sbe.lo
b

®
@ L pr[f ¥ (r)dq+ = J‘AT(r) dq]dz

2 —
O »[)‘PL+K4,’I my dqdz

P

1 By
@ -z OPL[—:—?Z s & @15 Az

dp
® =1 FoiP e [ e
Zpak{’
P
Zpak& 0

1 q -
- = QPN[ (r)
2p

Zp

A'f‘ )]s, as

R NEAG -:R—mzl"- At s yas
a

% Q (PN+KN)6||1?1.de
)

-3 Ity (:p:Nz V-;u.>dv
pa

__} g al), VﬁNﬁumde
Zpaky

—— [FY- opav

2paky

-1 R " A(r)— — A(l‘)
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TABLE 1. (Cont'd.)

L
OK % P, S dz 2y [ P\ av
@ 1 f‘— @) g () L 5 dz _L_I (u( r) o) )- Vp,dV
L 232k£ 0o P p ;sz P 'p PN
i) (i) -'(1)- ()= (p), ga
dg+ d 1d ‘
(::) ZF)akt I f ‘fnnb q u, f qldz Zp;ﬂﬁn §} Ty 'm +up"1r5) ] VpdS

A factor % appears explicitly in tems@@@ @‘ @ and@because of
£

the time averaging. §or example, cons ider the first term in Eq. 6.12 is
used to eliminate mb in favor of Gy’ and A1(r), a term
~(x) L
(1/2)[p£ ut s 1
~ ~(r)

arises. The product p,u is the rate at which work is done per unit area of
surface, and the % 1s the average of cos wt cos (wt + ¢) where ¢ is the phase
difference hetween p, and u' at the surface. The remaining pieces of the groups

and(:) are also rates of doing work, associated essentially with fluctuations
of density. Similarly, all other terms containing the % are various kinds of
time-averaged rates of doing work.

The term (:) shows that there is a time-averaged energy loss at the surface,
equal (per unit area) to

The factor Oll , as argued above, assures that this term arises only if there are
acoustical motions parallel to the surface. As emphasized already, the process
represented by this term is the inelastic acceleration of the gases leaving the
surface normally, so that they acquire the acoustical motions parallel to the
surface. The time-averaged energy possessed by the gas is ultimately (Py + Ky).
The factor 2 arises here because the amount of work done in such a process is
twice the mechanical energy finally gained. Half of the work done appears as the
mechanical energv, and half is dissipated as heat. The total work is of course
done by the waves already in the chamber and hence is obviously an energy loss.

Similarly, the term represents an inelastic piocess; the gases evolved
in the combustion of particulate matter, at the rate Wp, must acquire the local
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potential energy, Py. Once again the work done is twine the energy finally pos-
sessed by the gas.

Finally, term (:) should be interpreted as a time-averaged work per unit
volume and time+ For the acoustic field, py/P =__(9N/5): S0 pN/aaz = SN/B'
Hence, the factor in parenthesis is just pN(V-ﬁ)/p and represents a rate of change
of volume due to the density fluctuation and dilatation by the mean flow. Thus,
the whole term does indeed vepresent a rate of work by the pressure fluctuation.

In sumsary, it is possible to provide a physical interpretation for all the

terms in the growth constant, although their appearance is not obvious in all
cases.
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8. AN ALTERNATE METHOD OF COMPUTING
THE GROWTH RATE

In Ref. 2, Cantrell and Hart have proposed a means of computing the growth
rate for acoustic waves in a rocket chamber. Part of their results are identical
with part of the results found here, but their formula for the growth constant a
is incomplete. Moreover, if their procedure is followed exactly, it is not possi-
ble to determine, among others, the influence of residual combustion. Their tech-
nique is therefore not applicable to liquid rockets, for example, whereas the
present analysis is valid for any combustion chamber.

It is the purpose of this section to summarize the calculation proposed in
Ref. 2; to identify the respects in which it differs from the present work; and
finally to show how the gemneral idea proposed there can, when correctly developed;
produce results in accord with those found here. However, it should be emphasized
that since the analysis of Ref. 3 is for an inviscid, three-dimensional flow field,
it does not and cannot contain the boundary processes, discussed in Section 6,
which have been incorporated in the modified three~dimensional problem.

8.1. SUMMARY OF THE ANALYSIS OF REFER: ZE 2

The main idea proposed by Cantrell and Hart is that the stability of waves in
a chamber can be studied by examining the time rate of change of energyv in the
chamber. This is computed by integrating the energy equation over the volume of
the chamber, and making use also of the equations of conservation of mass and
momentum. Residual combustion and particulate matter were not accounted for in
Ref. 2, but they will be included here. Then the inviscid equations of motion
are Eq. 4.1, 4.4, and 4.5. In order to c'wify the correspondence between this
work and Ref. 2, Eq. 4.4 and 4.5 are slightly modified to introduce the enthalpy
h = J cydT:

P

ao . -
ae 7 @) wy (8.1)
-+ 2
du u, _1 2 -
etV +3) = 5 (F - o) (8.2)
5 2 2
Ly o oyers u_ > 3
3t p(CvT +‘5—) = ~Ve[m(h + 5 ] + up F+eP0wp + (Q+Qp) (8.3)
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where m = pz is the vector mass flux of gases. Equations 8.1-8.3 are equations

(2)-(4) of Ref. 2 except for the additional terms due to residual combustion and
the presence of particles.

Now the left-hand side of Eq. 8.3 is the time rate of change of the total
energy density for the flow field: it includes not only the energy of acoustic
waves but also the energy associated with the mean flow. As noted below, this is
a crucial observation. Thus, integration of Eq. 8.3 over the mean volume of the
chamber gives the time rate of change of total energy withi.. the chamber:

2 2
) u - [T [ u > F
3p 4 P(C,T +57)dV = =/9+[m(h + 5)]1dV + S [np F + € 0¥ + (Q+Qp)dV- (8.4)

It is necessary to extract from this equation an equation for the balance of
acoustic energy only.

To do this, the variables are as usual expressed as sums of mean values and
fluctuations. Cantrell and Hart show that the left~hand side and the first vol~
ume integral on the right-hand side can be rewritten and partially combined to
yield their equation (16). Let ( ) denote time averages, and one has from Eq.
8.4 with their result written using the notation defined here:

2 = oo
d ! —_—2 (;. !
(zz‘de[;%?i-%pu' +-——-——-—-_£121)p’]> =

= 2 - - -
Q - - ! -—— =4 —_— -,
= - (ﬁ dSn-[u'p'+§E_T+p(u-u’)u'+£1(u- u')u ])
pa a

+( [n'ip- F+ epo¥po * (@HQ 1AV ) (8.5)

There are now two important points to be made: (1) the last term on the left-
hand side of Eq. 8.5 and the last two terms in the surface integral on the right-
hand side should be dropped under the circumstances for which the agnalysis is
useful; (2) the last set of terms in Eq. 8.5 will not produce the influences of

residual combustion and particulate matter found in the present work, for a
reason given below.

As Cantrell and Hart have argued, the left-hand side might be interpreted
as the expression for the time-averaged rate of change of total acoustic energy
in the chamber. Hence, without the differentiation, it is the time-averaged
acoustic energy, and the right-hand side represents the time-averaged rate of
change of energy due to the mean flow/acoustics interactions, residual combustion,

and particulate matter. Therefore, by the definition in Eq. 7.9 of the growth
constant a,
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' - - = 2 _..:—o-d ! :—0 :
(ﬁ dSn- [p'u'+_E_P_—jz—+p(u-d)u'+_—£_7(u-u’)u])
pa pa

20 =

( fav[u - F+e w+ (@ )1)
J P PO . (8.6)

(J‘dv[}z_;ul +_L_ +(U.ozu')pt])
2pa

Unlike the calculations given in the preceding sections of this report, Eq.
8.6 is formally valid to any order of the mean flow Mach number. Consequently,
p' and U° represent acoustic quantities which also may differ from the classical
unperturbed values by terms of first and higher order in the Mach number. How-
ever, for practical purposes, it is certainly a convenience, quite likely ade-
quate, and virtually a necessity if relatively simple results are cbtained, to
consider perturbations only to first order in the Mach number.

At the burning surface, the first approximation to a (which is of course
zero there for the unperturbed field) is of the order of the mean flow Mach
number, as for example shown in the definitions in Eq. 9.1 and 9.2 for pressure
coupling; [Abl and Rbl are around 1 - 7 or so. If the amplitude of _ th osc1lla—
tion is taken tg be of order un1ty,+then p'u' is of order;ﬂé, as is up’ /pa in
Eq. 8.6. But (G-u ")3' and (@ - ©')a are no greater than My°. Hence, if those
terms are retained, higher order terms in p' and U' must also be retained. In
order to find those, one must return to the inhomogeneous differential equations
and solve them, a step which has never been taken in practice, and obviously must
involve a great deal of effort. (Formulas for the first correction to the un-
psrturbed values have been given in Ref. 3.) For the same reason, the term
G- u')p' /a? should be dropped from the denominator of Eq. 9. 6, since it is of
order M, and therefore adds a correction term to « of order Mp2. Thus, the first
part of Eq. 9.6 is correctly

= 2
(asa- [prar + 221
pa
(J dV[%_—FE‘Z+ —g_; ])
2pa

The denominator is precisely EN2/2552 and this result is identical to that found
from the real part of the first term in Eq. 5.39.

(8.7)

It is obviously desirable to avoid computing the acoustic field to higher
orders; numerical procedures are available for computing the classical field in
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any geometry, but not with perturbations due to the mean flow. This is the main
reason why regions of high Mach number, such as exhaust nozzles and the vent of a
T-burner, should be treated separately; they are then introduced in the acoustics
problem as boundary conditions, represented by admittance functions.

Now consider the second part of Eq. 8.6. It is necessary to expand the quan-
tities to second order, in whatever small parameters are present; for example,

> > +>, *>,
F—F+F1+F2+...

The first ordgr terms are associated with the unperturbed acoustic field. Consid-
er the term up + F

BB s (B4R e i) (PR R
. (u, Ut ). (FH+F"+F,+...)

-t -

. f"'l +a . §)+(ﬁ'£>1- i"’*+§i)2- 1«_“+Gp- f:,_) +...

el

| 4

el

. +(

P p P 1

The first term is associated with the average flow and should be dropped. The
time average of the first order terms is zero. In this way, the denominator of
the ratio gives

e d . -y -l . : : . : ' ' ——— — ' ' '
( j,dV[(u;)I IE"1+ui)2 F+up ¥ '2)+(epolwpl+e;)°zwp+epowpz)+(Q2+Qp2)]) (8. 8)

Not only are the contributions from particulate matter in disagreement with those
found here, and used elsewhere, but the influence of heat release appears only in
second order. The second result is clearly wrong; for example, such terms must
arise to first order if the behavior of liquid and gas rockets is to be described
correctly. The first order effect does appear in the result in Eq. 6.16 found
here, .

The question, then, is: why does the analysis of Ref. 2 produce the correct
form for the mean flow/acoustics interactions (apart from the boundary terms)
but fail to represent correctly the influence of particulate matter and residual
combustion? The answer follows from the fact that the analysis is based on Eq.
8.4 for the time rate-of-change of the total energy in the chamber, rather then
on the energy balance for the acoustic field alone, although the latter is
apparently obtained eventually.

For by using the total energy, one cannot in any obvious way show exchanges
of energy occurring totally within the system. Thus, for example, heat lost
from the mean flow by combustion and added to the acoustic waves appears iwice;
once with a + and once with a -, thus cancelling. The debit and credit accounts
are not shown in detail, but only their net result. A net result does appear at
the boundary, as shown by the first term of Eq. 9.6.
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8.2. THE EQUATION OF BALANCE FOR THE TOTAL
ENERGY OF THE ACOUSTIC FIELD

The idea of Ref. 2, that the growth constant can be found from considerations
of the total acoustic energy, can be developed to produce results in exact agree-
ment with those focund here. The starting point is the linearized equatioms in
Eq. 4. 10 and 4,11 for the three-dimernsional acoustic_field. Take the scalar pro-
duct of U' with Eq. 4.10 and add the result to p /pa2 times Eq. 4.11 to find

?8% P BZ:—+ )+V- (u'p') = -pu"(u-Vu'+u'°Vu)+—&Zu- Vp'+u' (F- 0')‘*‘P'D'
Zp pa

(8.9)

Now 1ntegrate over the mean volume of the chamber and convert the integr 'l of
v. (u‘p ) to a surface integral:

d8 - + ﬁ dsn. (u'p ) = j‘dV[_u' (u' Vu‘ a'- Vu)+—RZ- u. Vp' ]+j‘qu‘ (F' 0')
pa

+ [avpp (8. 10)

This, of course, is valid only to fixrst order in the average Mach number, and one
can use unperturbed values for u' and p' on the right-hand side.

Tk terms in the first integral on the right-hand side can be combined in
essentially the same way as those following Eq. 5.38 were treated. By use of
some vector identities,

b -t - -t -

- (- Va'+u'- Vu) - W(u w)-u'xvxw' ] = ute 9(T- )

"

. [(3- 2)a'T - (B~ a)v-a .

Thus, the volume integral is

[aviee {@da) v 3Ry - vp']
pa

= ﬁ dSn-u'pu- u'+j‘dV[-p u- (u'v. u)+£_'1— u-vp'l .
pa

The integrand of the surface integral i; of order Mb3 and hence must be dropped.
For harmonic motions, the first term im the second integral can be written by
use of the acoustic equations

w = ’j:l_—VP' , vut = -—-—lak p'
ip ak Yp
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SO

-pu- (u'V-u') = - (L Vp) _2_2 a. Vp'

el

A|‘l"-‘ u.y‘n‘[}‘ Wll{[ “n’li'[g'r

T

é ? which equals the second term in the second integral, as demonstrated in the argu-
; e ment following Eq. 5.38. Thus, the volume integral reduces to
! — : - - .: 1 : : '2

. . favipa: (v vai Vi) + B 5. vp] = [ave v ()

. 2 pa pa

- = [av]e- (_22.) v.‘]

] .21 p2 22
- - fasia(2)-Jav Ry 0.5

pa pa

which is the result found just preceding Eq. 5.39.

Now to obtain this result in general, it is necessary to show that

favee @v.d) = Jav_Ey 5. vp
pa
or

: 1 - -t
J‘dVU‘ [:_E_Z-Vp"*'u'ch'] = 0 .
pa

Again by use of the classical acoustics equations, this can be written

[ava. [pr 20 a“' K i

L bk e L e N
s i s s A I AL S S M PRI L

ot
%; and by differentiating with respect to time,8
- 22 2
E ™ —_ o ! -oa 1
deu'[p——‘i- w—E17=0.
: ot

8 Because of this step, the end result in Eq. 8.11 has been shown to be true
only to within a constant which can clearly be taken to be zero with no loss of
generality.
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But both u' and p' satisfy the unperturbed wave equation, since terms of order ﬁg

must be neglected; hence

2= 2 - o
ot ot

Therefore, the desired combination is obtained, i.e.,

IdV[—H‘(a'V°3')+%_E’VP'] = IdVE—E‘f u- Vp' = j‘qu-V(—_ij;z)
pa pa

-~ 2 2
= $ass- 1(L) - Jav B vw (8.11)
pa pa

and Eq. 8.10 can be put in the form

o 2t o 2 =
-(31—‘:': = - ﬁ dSn. [u‘p‘+u_—_P_—l_z- ]+J‘qu'- (F'-c! )-J‘dV_-%z- V'Eﬁdep'P' .
pa pa
(8.12)

The corresponding value of a is given by the formula obtained after taking

time averages of Eq. 8.12
"~ - .]—_—1. !2 '2 : - - -
-20€ = ﬁdSn. [u‘p'+-%%2- ”-K j‘dv%—z- v-u ) + (J‘qu'- (F'-3"))
p

+ { Javp'p) (8.13)

It is a simple matter to verify that for harmonic motions Eq. 8.13 is identical
with the real part of Eq. 5.39, which of course was obtained by an entirely

different computation.

Hence, it has been shown that by considering the balance of acoustic energy
one can obtain the same result for the growth constant as that found by an approx-
imate solution to the linearized equations of motion. However, it is important

to note that both analyses cannot provide the surface terms, essentially associa-
ted with viscous boundary layer effects, which have been incorporated in Section

6 in the modified three-dimensional analysis.
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9. A SIMPLE APPLICATION TO T-BURNERS

It is an important result of the analysis developed here that not only is
the response of a burning surface characterized by two functions, but both neces-
sarily appear in a stability analysis. Consider the case of pure pressure coupl-
ing; then the admittance (Ap) ard response (R}) functions are defined by the

formulas
‘Ji ~
- = Ab'fr: (9.1)
a YP
—I:—b = Ry = 9.2)
m YP

These relationships apply, of course, at the edge of the combustion zone. The
signs are set so that if Ay and Ry 2re real and positive, u and mp are real and
positive outward from the surface. After substitution of these definitions into
Eq. 6.11, one finds an expression for AT in terms of Ay and Rp:

Ay

é_‘I_‘__—_[.__-}-l_R]-L . (9.3)
— — b — .
T Ldb YP
The combinatior in bruckets might also be called the entropy response func-
tion for pressure coupling, since AT/T = As/C, where As is the amplitude of en-
tropy fluctuations at the edge of the combustion zone. To see this, begin with
the combined expressions of the First and Second Laws of Thermodynamics

Tds = de + pdv = de-gg‘e .
PP
But for a perfect gas, de = CydT and dp/p = dp/p - dT/T, so one has
Tds = CdT -3 - caT-RTXR .
P P P P

Now apply this to small fluctuations of an element of gas, and split dT into a
sum of isentropic and nonisentropic parts:

dr _ y-1dp , AT
T ~ v p T
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% Substitution in the previous equation leads to
= —1 T
= T+[¥=cC -R]=dp = C_AT . 9.4
Tds = C,A [Y p-Rigdp P (9.4)

Since (Y-l)/pr = R, the second term vanishes, leaving the result quoted.

gl ke I AT A

The implications of these results may be most easily seen by examining
the simple case of a T-burner having samples of propellant at the ends, normal to
the axis, and short grains also at the ends, but extending along the lateral
= walls. 1t will be assumed that the latter are approximately flush with the

El chamber wall so that the cross-sectional area of the chamber, S., is constant.
g} Moreover, resi'ual combustion and the presence of particulate matter will be
E‘ ignored so that Eq. 7.8 simplifies to
E: 2

wE

-20

L
% = pak,| L6y RZLb AT(r)ﬁx,)sbe]
a

-qj‘ 8,8 B ATE)E as)

k,q 2 dp k,S
L f[p& —2-( dz)]mbdZ- te

u

The perimeter of the chamber is q, so that if the length of the lateral grains is
Lp, the area of the burning surface on the sidewalls is Syg = qlp.

With the definitions in Eq. 8.1 and 8.2, the combustion terms in Eq- 8.5 are:

o3k, [(p,0,(T) atFls JL= 2k,S, (r) 9.6
i P L pi,m'b 'h[ L,Sbeo =~ (Ab +M ) (9.6)

and
-p ak 5 ), —
P zﬂj; P, " 5 = aft m.bldz = -k, rR (AI +Mb-MbRér))]dz .

For short grains, pl = 1 under the integral, and with the assumption that the re-
sponse functions are constant over all the burning surface, the second contribu-
tion is simply

i R

e
Y

-2k,S, ng” L am mr . 9.7)
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The factor 2 arises in both Eq. 9.5 and 9.6 because grains are placed at hoth ends
of the chamber; the burning area of one lateral grain is Syg = qlp, where Ly is
the length of the grain.

Since d§ /dz = 0 near the ends, the surface interaction terms, evaluated for
the lateral burning surfaces only, are

d In]S
A2 1 L bs N A
:‘_".— “ "'—2' ("—) Jmydq w2 == w25, My - (9.8)
pa k, pa

This acoustics/mean flow interaction term also contributes at the vent. For the
fundamental (and all odd modes), p2 = 0 there, while de/dz = kg sin(kgL/2) =
-kg. Hence, at the vent,
L k
l 1 ) 1 —
— j' 2z ( fmbdqdz R - — vav
pa 0k 1 pa

where Ay is the flow area of the vent, and @, is the magnitude of the mass flux
through the entrance of the vent. The sign change occurs because the flow is
outward. Now by continuity,

i

vav = Zmb(Sbs+Sbe)

SO
k L dp —
(2L (GO Imm]  ~aembos,) . o9
pa 0 kL nt

Thls holds for all modes in the simple uniform burner, since for the even modes,
Py = = 1 at the center of the burner, but dpzldz = 0, and one finds again Eq. 9.9.

Note that there is a gain of energy associated with the flow out the vent.
It arises because as the flow exhausts, there is an inelastic process at the
boundary in which the fluid originally participating in the acoustical motions
flows out the vent with no acoustic energy. The energy it loses is given up to
the field in the chamber, thereby constituting a gain. This process is distinct
from the radiation of acoustic energy, a loss which is associated with pressure
fluctuations at the vent, and is therefore present only for the odd modes. It
should be emphasized that this contribution from the vent is a formal result of
the one-dimensional analysis and in no way constitutes a detailed analysis of
the vent, 1Indeed, one should anticipate that the one-dimensional approximation
is much less accurate in the vicinity of the vent, so that the results are sus-
pect. Moreover, while it is relatively easy to understand that there should be
an energy loss associated with the influx of mass at the surface, it is difficult
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to understand how the inverse process actually takes place at the vent. This ques-
tion is an important one for the interpretation of data taken from T-burner fir-
ings, but it will not be examined here in detail. A careful consideration of the
vent should probably produce a response or admittance function which appears as an
additional contribution to the energy balance and hzuce the growth constant.

The last term in Eq. 9.5 can be rewritten by using the continuity equation
for the mean flow,

du

R T
pS pS
"
Over the burning surfaces one finds
kS L S, m
17c [s2dug, .2 *'bsmb=zks M, . (9.10)
1 dz - L’bs b
a 0 pa

This tgrm also provides a contribution at the vent, but for the even modes only.
Since p2 = 1 there,

Here G is the axial velocity in the chamber, and again by coatinuity,

Scu = (Sb +Sbe)ub

so that
k,S L —
L°c fa2du ] - v
[ 5 IOPL dz ~ 2K, (Spe + Spg My, (9.11)
for even modes only.
Finally, for this special case,
I
W 2 . ~2 L
=2 Ep = = ‘g y Scdz ~Z kS, - (9-12)

Substitution of Eq. 9.6-9.12 into Eq. 9.5, and some rearrangement, gives

51




M b e R T

bR

. . -
S A Y S

=

NWC TP 5349

S S
aL _ [ (r), = be (x),1,a(t) 5z 35 g (*)y1-bs
- 28y M) 3 2 (MR T2 (A i, ¢, R )] 5 }

, {zmb( sbse+sbs )-[21\_/LD(SID§SIDs )] } )
C C even

modes
only

(9.13)

Q2
wl|n.
t

The term agL/3 represents other possible sources of attenuation, such as wall frie-
tion. The first set of brackets contains all contributions from the coupling of
pressure fluctuations with combustion; the second set contains the mean flow/
acoustics interactions at the burning surface and at the vent.

An interesting special case is that for odd modes (really only the fundamen-

tal is of practical interest); if the coupling should happen to be isentropic, then
MpRp = Ap#My and Eq. 9.13 becomes

a L +S o,L
Ab +2Mb" be bsy . 4 ) (9.14)
a

The 2 multiplying Eg is half due to the end discs and half due to the vent. This
result has motivated testing with the variable area T-burner. Measurements of the
growth constant, a, are made for different area ratios, (Sb sbs)/SC° Then if o
is plotted versus the area ratio, the slope is 2(ab(r)+2Mb), and the intercept is
ad. This procedure is based on the crucial assumption that the attenuation ayg is
independent of area ratio, a circumstance which is likely not to be true.

More importantly, however, there is no justification for assuming that the
coupling is isentropic. But, if that assumption fails, Eq. 9.13 contains essen-
tially three unknowns: Ab(rs Ry (r) and ag. Again for odd modes, one has

S
9;11 = Z(Abr)-!-M )[l—b—sl 4 2be ]+2MbRt§r)El'%l-—sb—s]
C

1S oL
+2Mb( be bS . d . (9.15)

In principle, a sequence of three tests (at the same frequency, say) in which
Spe and Spg are varied will provide three values of a, and hence Eq. 9.15 leads
to three equations in the three unknowns Ab(r)+ﬂh, Rb( r)

s, and ag. It remains to
be seen whether such a strategy may be useful.

Real T-burners in which the grains are not flush with the lateral walls re-
quire more elaborate analysis outside the scope of this work.
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10. APPLICATION OF THE MODIFIED THREE-DIMENSIONAL
RESULT TO MODES IN A CYLINDRICAL CHAMBER AND
THE DCATA OF BROWNLEE AND MARBLE

The most extensive study of a stability boundary in solid propellant rockets
is that due to Brownlee and Marble (Ref. 5). In Ref. 6 and later in Ref. 3, the
classical linearized stability analysis was applied. Although attenuation by
particles was suggested as the dominant damping mechanism in Ref. 6, viscous
stresses at the head end were supposed to be more important in the discussion of

Ref. 3. However, not until much later was the admittance function of the propel-
lant measured in a T-burner (Ref. 7).

Midway in the experiment:- program reported in Ref. 7, it appeared that the
analysis of Ref. 3 had been verified (Ref. 8). Subsequently, this turned out not
to be the case. The propellant used in the experiments of Ref. 5 contains no
metal, so it is unlikely that attenuation by particles ia the product gases is
important. Indeed, motion pictures show that the products are in fact very clean.

There appear now to be at least two possible reasons why the analysis and measure-
ments do not agree-—-the discrepancy is quite large (Ref. 7):

(1) The T-burner measurements of Ref. 7 provide only values of the
admittance function;

(2) The various boundary terme introduced in the modified three-

dimensional analysis have until now not been taken into
account.

T Y B R B s s T R

Unfortunately, there is still no data for the response function. Hence, the ques-
tion of the nonisentropic behavior associated with the difference between the re-
sponse and admittance function cannot be explored. The purpose here is simply to

examine the importance of the new terms introduced in the modified three-dimen-
sional analysis.

All influences of condensed particles and residual combustion will be ig-
nored, but the possibility of nonisentropic processes at the boundary will be in-

cluded. Only the stability of waves will be treated here, so the problenm is
simply to evaluate the right-hand side of Eq. 7.2:

cdoo
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2 [— .
z—;.EN ={ (8 S [mér) +Rmb Al )(améulds}
{___ 65 5o+ ;sz (v)* Toumy ds}

A G N a
+—L mu“(l)ovP dS-Z-:_-éE

(10.1)
kN b N Py

2
N -

As earlier, all other processes of attenuation have been represented by a decay
constant, a4.

In the results reported by Brownlee and Marble, a particular mode was ob-
served, but there is no added work here in computing the growth constant for all
modes in a cylindrical chamber and later specializing the results as required.
The classical acoustic modes are given by the formula:

=- cos(kLz) cos(méo) Jm(x r) (10.2)

pN mn

~ . a7 .

ket ~ 1 Pag m - m -

Uy === VPN = — {r I zos(k Lz Jcos{imé)-¢ = Jmcos(k ‘Lz )sin(md)
paky paky

-2k, J sin(k,z )c03(m¢)} (10.3)

2 2 2 (10.4)

In order to satisfy the boundary condition on py, % are the roots of

mn
dJ
.._E = 0 (1’-’- T )
dr (nmnr) <

where r, is the radius of the chamber. As usual, m=0, 1, 2, ... and ky = ¢n/L
with 2 = 0, 1, 2 ... The mean velocity field for incompressible potential flow
is -

T =uwl2Zs.2%]. (10.5)
ub rc l‘c
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~

- A
It is simply a matter of arithmetic to compute V¢uy and hence V, ;N

»n

4 . GN , 61, and 8|. For the cylindrical chamber,

v 3 .
LUy or

(10.6)
A au 311
= _ 1 "N¢ Nz
V"-uN - T ar + az (10-7)
In these computations, some use is made of the equation satisfied by the Bessel
function, 2
d-J daJ 2
m , 1 2 m _
z v T %an T W =0 (10.8)
dr
At the surface (r = r.) one then finds
v 3 = x (mz--742 rZ)J cos(k,z)cos(méd) (10.9)
e\ S 2 mn ¢ “m L
pakbf?
c
2 2 10.10
V“-u :_——2- (m -k,r )Jmcos(k z)cos(me) ( )
pakyr,
and therefore, by substitution into Eq. 6.19 and 6.20
2 2 2
F i ‘m —umnrc ‘
L= 10.11)
z Z 2 2 2 ] (
" m e S
Te
s lnl-kzrz‘ -
= [ 3 i (10.12)
2 z,
jm -" I + |m l

These formulas show, as one would anticipate from the symmetry of the situation,

that the weighting factors dll and 6, are independent of position on the surface.
Note that only for purely radial modes (m = ky = 0} does b vanish.

With these preliminary calculations, it is not difficult to evaluate the
contributions to a.
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10.1. COUPLING AT THE BURNING SURFACE.

It will be assumed that only pressure coupling is important. With AT given
by Eq. 9.3, the c-upling terms are

am (r)
o) 1% ( 2r L o,
YE [.Rb (6""’5;)‘*‘? (_dez_ +1_Rbr ))] an(nmnrc)‘gcos (m¢)d¢£cos (kl,z )dz

(r)
= M8, [Ré Noy+é. H__(Ab +1- (r)\:lJZ( r )A (10.13)

znn c rnL
b

where SbS = ZﬂrcL is the area of the burning surface, and

Ay = 4(1+5 oJ(1t8, ) - (10.14)

The Kronecker deltas, 6;,, 8yo, are unity if m = 0, £ = 0, respectively and zero
otherwise.
10.2. ACOUSTICS/MEAN FLOW INTERACTIONS AT THE BURNING SURFACE

This term is non-zero only along the burning surface. Although i is non-zero
at the entrance plane of the nozzle, and of course there is a mean flow there,
there is no contribution. The reason is that this term, by construction, is
present only if the acoustic field is zero? outside the boundary considered; for
only then must there be a transition through a boundary layer. The energy loss is

L .” [PN +-l:-N2- (VPN) ]GurTxbds =

m +k
= M S, GuJZ (n )[1 + }AmL (10.15)

B

10.3. INFLUENCE OF THE NOZZLE

The first Surface integral of Eq. 10.1 also applies at the entrance to the
nozzle. Relatively little is known about the nozzle losses, but formally at
least, admittance and response functions can be introduced in the same way as

9 or, more generally, discontinuous. But non-zero values just outside the
boundary different from those just inside will not occur in practice.
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for the burning surface. The values of 6, and §jare of course different; for ex-

ample, VJ_'I-;N is now duy,/3z. Oune then finds

2
5 = [ *t ] (10.16)
nL - 2 2 2,.2 2 )
j2m L Lﬂgcrc
§2n32—u2nnrc?!
8 [ ] (10.17;
all l2m z 2 r2‘+kz yJ
c P A

The signs on the mass fluxes are changed, fij, + ~me and ﬁb > ﬁe because the flow
is outward; then the response function for the nozzle is, for example,

. (10.18)

The contribution of the nozzle is then

(r) 41 A"
XA r
vMe[Rn +;{—(6n"+y6n l)( 1\‘1/11

r
(r)\} c 2
+1'Rn )J(1+6m0)‘£ .Tm(y,mnr)rdr . (10.19)
b

It is likely that the admittance function (in particular the real part) is very
small unless the mode has an axial component of velocity. If, in addition, the
coupling is isentropic, Eq. 10.19 reduces simply to

r
C
= 2
M, (1+5m°)(j’ Jo(w__rirdr (10.20)

which represents a loss of wave energy due to convection by the mean flow exhaust-
ing from the chamber.

The next to last term in Eq. 10.1, depending on 1 (i), contributes nothing.
At the burning surface it is zero because the flow leaving the surface may be
assumed to have initially no motion parallel to the surface. At the nozzle en-
trance, there is no contribution because the parallel motions (i.e., normal to
the axis) are continuous through the entrance plane.
2

Finally, the values of Ey“ are given by

€ L
EI\? = ZnLAmLJ‘ an(xmnr)rdr =Sy m (1- )J ("‘mnrc (10.21)
0 mn' ¢

57




NWC TP 5349

Bringing all of the above results together, one has for a:

2
E
_;13. = Mb [ 6u+y6 )(Ab t1- R(r))] ml, mnrc)

(combustion coupling)

2

_ m +k 1“_ ]
-MbsbsanAmL[l * J‘m(umnrc
(turning of flow at the burning surface)

T (r)
-wMe[Rn f' I+Y 6

2
r
C m 2
x (o) 5 (1 - ‘;‘T)Jm(

(nozzle)

EZ

N
-20y = (10.22)

{other ltosses)

Consider the mode reportedly observed by Brownlee and Marble, namely that
for m =1 and 2 = n = 0. For the nozzle, 8n“ =0 and 6 =1, yhile along the
burning surface both &|j and 61 are non-zero. The Mach number at the nozzle
entrance is found from Eq. 10.5 to be ¥, = 2(L/rc)ﬁb. Eventually, Eq. 10.22
can be reduced to

ar 1 [(r) 1 Aér) (r)]
== =71 R +-Y—(45u+~164.)(h7I +1.r,"))
aM,, (1 1_) b
ol ¢
2 2” A(r)
o gsT (5 Yw) - o a0.29
(uolrc
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On the stability boundary, a« = 0, and Eq. 13.23 can be rewritten as

(r), 1 (Aér) (r) 1 ¢4 alr) 2

Ry“ '+ (8y4y6y) (o H1-Ry,TT) = (- Y -

b 'y oL Mb Rb ) ( “i},rf) aﬁb (ﬁe )<1+6{,0)
2 .2
(n_,r "+1)

5y —oL ¢ } . (10.24)
(uolrC -1)
(r)

For isentropic flow, Rp = Ab(r)/ﬁb + 1, and if both the nozzle admittance
function and the loss aswsociated with mass addition at the burning surface are
neglected, the kEq. 10.24 reduces to Eq. 24 of Ref. 6; for 2 = 0,

(r)

Ay _(1 1y %% 1

—— “\'"TIZ)==" "7z - (10,25)
Mb uolrc aMb Kolrc

Now uolrc = 1.84, 5o the second term on the right-hand side of Eq. 10.25
is -.295. As argued above, and in Ref. 6, losces within the volume are apparent-
ly negligible; but that leaves only viscous damping on the head end as the source
of loss. 1If one assumes simple laminar shear losses, it turns out that the
first term in ¥Fq. 10.25 is about one-tenth that of the second. Hence, specifica-
tion of the stability boundary comes down to

Ay

M,
b

r)
= - .295 , (10.26)

which represents a simple balance betwzen acoustics/combustion coupling and
acoustics/mean flow interactions. Measured values of Ab(r)/ﬁg , taken from

T-burner data by using Eq. 8.13 for end discs only (Sy, = Sc) are shown in Fig.
10.1 -aken from Ref. 7, for p = 300 psia.

Note that Ab(r) < 0 for frequencies greater than approximately 2000 Hz, which
means that the combustion processes are absorbing energy. The -.295 is the net
driving effect by the mean flow, shown as the dashed line in Fig. 10.1.

By taking data for several mean pressuras, a plet of the interseztions of
Ab(r)/ﬁg with ~.295 gives, according to Eq. 10.26, the stability boundary shown
in ¥ig. 10.2. There is clearly a very large difference between this result and
the observations of Brownlee and Marble.

Now suppose inhat, while Ap (r) s still zero, the coupling is not isentropic,
and the loss due to turning of the flow is tzken into account. Define 4Ry as
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FIG. 10.1. The Ratio AST) /My for
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(r)

AR, = (A_b + 1)- Rér) . (10.27)
My,
Then Eq. 10.24 leads to
(r) a.r
- . 1
% + (D) 5y ARy = (g g) == -grgeailigly)  (0.28)
Mb o1t c ah&b o1t e "Moc

If ARp # 0, this may provide a different result for the "predicted" sta ility
boundary. To the present time, measurements of Ry (i.e., T-burner tests with
grains on the lateral boundary) have not been taken, so it is not possible to
determine whether or not the explanation proposed here is adequate to account
for the poor agreement shown in Fig. 10.2. Indeed, another very strong possibil-
ity is that the response of the propellant to the azimuthal acoustic velocity
parallel to the burning surface--i.e., velocity coupling--may be significant.
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APPENDIX A

The problem discussed here sezms to be one which has not previously been

treated.

It is concerned with the question of representing in general the coupling

between a surface and an ur-=teady flow, accounting for the fact that the represen-

tation depends on the flow-tield itself.

From the analysis of the stability prob-

lems, one firds that the interaction between an acoustic field and a burning sur-

face depends c¢n the component of velocity parallel to the surface.

When Eq. 6.5b

and 6.12 are inserted in the expressions for the complex wavenumber, one finds

¢ .
-fak, {J [n‘ib+;;-% m, AT 15,45

2 .2 .2
(k" -kf )E, = {

k"‘i-;kl’ ‘U rrﬁb +y '_3.2‘ I_!.le'f' ]ﬁlds

when only these coupling terms are cousidered.

ail parallel
acoustic velocity (A-12)

no parallel A-1b
acoustic velocity ( )

To motivate the argument, take the imaginary part of Eq. A~1 to find for the

growth constant

.
L2 Jrd ol sgratthyp as (A-2a)
gy L de, Ey P
Q=535 = =
wE N 1o (5),= (@)
4;22. fi=a vuyrat®yp as (A-2b)
\. Fa P.

The integrands have the units of velocity; write them respectively as
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G - LAl g rat) (A-3a)
p

8,9 - Lal) 5 yrat® (A-3b)
P

As shown in Sectlor. 7, E% = 2652 €, where 32 is the time—-averaged total acoustic
energy in the chaister; hence, Eq. A-2a,b can be written

2t 1] 3,017 (e}
20 =
& Dol

Obviously, then, the t _me-averaged rate of work done on the waves by the inter-
actions at an element of surface dS is

' 1 5,81 as (A-5a)
{rate of work) =
z I"\,g,ﬁ.L(r)dS (A-5Db)

(r) (r)

It should be emphasized that for each case, the fluctuations ﬁu‘r s U1 are
normal to the surface; the subscripts denote only that feature, of the unper-~
turbed acoustic field, used to distinguish the two limiting caszs.

That these different results have been obtained for the coupling in the two
limiting cases implies that the coupling for the general case somehow depends on
the relative orientati~n of the surface element and the local acoustic field, for
this determines what Lke parallel velocity will be for a given pressure amplitude.
To develop this idea, observe first that however complicated the mode structure
may be, the field in the vicinity of a surface may be approximated locally by a
superposition of incident and reflected waves. Let 6 be tte angle between the
normal to the surface and the directions of those waves. It is, of course, the
unperturbed acoustic field near a rigid surface which is of concern here. Sche-
matically, the limiting cases and an arbitrary acoustic mode may be represented
as shown in Fig. A-1. For all parallel velocity, 6 = n/2 and for no parallel
Xelocity, € = 0. Note that for the unperturbed field, the normal component
u - 1 of the velocity is zero.
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a——
ALL PARALLEL Gty = — /\f, . .k/\
ACOUSTIC —
vswc‘" el
S— B 1)
S IVTITTTIT I Y77 T
WAVE TO RIGHT WAVE TO LEFT
NO PARALLEL I
ACOUSTIC —
VELOCITY t _— '
o N
0 ! e ! l Y1
TYTYrYTTIY YT 7
INCIDENT WAVE REFLECTED WAVE
n n
\ 4
GENERAL
ACOUSTIC — +
MODE \ -
PP, ? t ?
,,,:,,,,’,,,,’, s 7372727777777 r7 s
WAVE INCIDENT WAVE INCIDENT
FROM LEFT FROM RIGHT

FIG. A-1. Sketch of Acoustic Modes
in the Vicinity of a Rigid Surface.

Let n and s denote coordinates normal and parallel to the surface as showii.
Then for the wave incident from the left, the incident and reflected waves may be
represented as

(

pt(” = -pa®'(s sin 6-n cos A - at)
< ui'(s“ = -sinAY'(s sin 8 - n cos @ ~ at)

(2) . -

. u, ~ = cos B8®'(s sin 8 - n cos § -at) (A-6)
[ pz('“ = -pa®P'(s sin 8 + ncos 6 - at)
4 ur(:) = -sinBQ'(s sin 8 + ncos § - at)

ur(:) = -cosf®'(s sin 8 + n cos § - at) (A-7)
.
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Here, subscript i denotes incident, r denotes reflected, and n, s denote the norma
and tangential components of the velocity.

There are corresponding formulas for
the wave incident from the right:
f (r) T m ht - >y
p; = -pal'(-s sin 8 - n cos B - at)
(r) _ _. ' . =
uo o= sin8 ¥'(-s sin 8 - n cos O - at)
u.(r) = cosBi'(-s sin B - n cos § - at) (A-8)
_ in
f (1‘) A i s Y
P, = -pal¥'(-s sinf +n cos § - at)
<u(r)- in 8 ¥'(-s sin 0 + at)
rs - Sn ¥'{-s sin ncos f - a
(r) = ] s -
uw ' = -cos B ¥'(-s sin 6 + n cos A - at) (A-9)
-

The functions @ and ¥ are velocity potentials; the primes denote differentiation
with respect to the argument: e.g., ®' = dP(z)/dz. (See, for example, Ref. 9,
p. 266.) Note that Eq. A-6, A~7, A-8 and A-9 represent solutions to the unper-
turbed wave equation, satisfying the condition that the velocities normal to the
surface, uj(j;) + ugﬁ) and ug) + u(

nl;) vanish at the surface (a = 0j.

Now expand u,(‘g‘) = ug{) + ul(-f;) in Taylor series about the origin, along the
n axis, and retain only the first term:

()

= (u.(u+u (“) = cosB[(p{-n cosb-at)-p(ncosh-at)]
in  rn

0 s=0

- - 2
e cosen-é% [cp(-ncase-at)-Cp(ncose-at)]n:o ~ -2cos no'(-at) .

Similarly, for the wave incident from the right,

'u(r)) ~ -2 coszenr.fe‘(-'it) .
\n s=0

Thus, the sum of these gives

”~

2 .1 (Yny __ il A-10
cos 8 == - Z(Cp"i'k?’) (—ﬁ—)n-o() - = Z(cpl_*.%d) . ( )
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Here, uy/n can be interpreted, since uy = 0 at n = 0, as VL°§, the divergence of
the velocity taken in the Airection normal to the surface. To see this, note

> >
that u = u, + ug and ¥V operates only on up.

Similarly, expand the velocity parallel to the surface, uéz) = ﬁgg) + ugi),

and uér) to find

- (us) e -Zsinzs(tp'-!-\#') .

In the limit s + 0, [ng(s)-ug(0)]/s can be interpreted as V"-ﬁ, S0

»

.2 vy-u .
sin”9 = -_H_).z@,fw, ; (A-11)

It follows from Eq. A-10 and A-1l1l that
A \Z
tanf = (—‘-vlli—l-) (A-12)
lvy-ul

where absolute values have been taken to assure, as necessary, that only positive
numbers arise., Then Eq. A-12 implies

~ 1
JET = sino = | “|V11°3L6 ]E (A- 13)
lvg-u] + [Ve-u|
A 1
JL = cosp = [—ul T (A-14)

|9g-u) + |94-u ]

It may be noted that Eq. A-13 and A-14 are likely not to be the most usefui
forms for practical geometries, since generally the pressure field is computed
numerically. However, by using the momentum equation, Vp' = -p 3u'/at, one can
write, for example,

= 1 p(én)-p{0)
V‘-.' u ~
10 (6n)z
V- @~ 1 p(s+8s)-p(s)

ipw (55)2
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where 6n, 8s are the incremental distances measured in the normai and tangential

directions from the point n = 0,s. In this way, the results of a numerical calcu-
lation can be used directly tc compute 6" and BL'

But now the question to answer is, "how should the limiting cases shown in
Eq. A-1 be combined to give the correct representation for the coupling when 8 is
neither 0 nor n/2?" An appealin§ guess is that the coupling for ro parallel yelo-
city should be multiplied by cos“6, and that for all parailel velocity by‘sinze.
That this is correct may be demonstrated as follows. First, owing to the way in
which the one-dimensional analysis of Sections 2 and 3 is fornulated, it is clear
that it is the component of velocity normal to the velocity in the chamber which
matters. For 6 # 0, the proportion sin 6 of the maes flux leaving the surface is
normal to the acoustic velocity, and the proportion cos 6 is parallel to tie acous-
tic velocity, as shown in Fig. A-2. Hence, a factor sin 6 should meltiply the
fluctuation u (of which the real part appears in £q. A-2a) or Eq. 6.5b, for tke
coupling due with flow parallel to the surface., 4nd, a factor cus 8 must multiply
a", or Eq. 6.12.

i R T R RO

T

TT7T77777777777777777¢7r7777%
@S

FIG. A-2. Projections of Velocity Fluctuations Associated
With Mass Addition, and aa Element of Surface Area.

But in addition to weighting the velocity components, the surface areas must
be weighted. For the work done due to coupling with the parallel flow, only the
area dS sin 6 parallel to the direction cf the incident waves is effective, as
indicated in the above sketch. And for the normal flow, the projected area dS

cos 6 normal to the direction of propagation is involved. Consequently, the total
rate at which work is done is

ﬁ(ﬁ|fr) sinze + '.'i_,_(r) ccsze)dS
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It follows that the two cases showm in Fig. A-1 should be combined as

2. 2.2 = ffcea 20 .20 R = a2 24)1as
(k "kL )EL = -1akLJj [mb(cos p+sin B)+-;Z mbAT(sm p+ycos 0)]
= -idk, [T+ my AT(61+5.)16 (A-15)
a
with 6" = sinze, 61. = CQSZG.
In prac-

It must be emphasized that mb and mpAT are normal to the surface.
tice, these quantities are likely to be expressed as response functins defined
for the limiting cases. For purposes of illustration, consider pressure coupling

only, 2nd define Ry, Ry, by

4

UEh AR AR MM 0wty o W i R o

— [xi’xb +f2' AT] R‘bll g all parallel acoustic velocity (A-16)}
my a P
— [, +vy __-——Fi I-fbef 1= Rbl-g- no parallel acoustic velocity (A-17)
m a
b

The preceding argument shows that the coupling in general is reprecented by

SO e g e
A L T

inp B 2 -
R,b“ sinf = + R.bxcose = ’ (A-18)

L ER R

and the rate of work done by processes at the element of area dS is

(A-19)

P SN Tt 0 e

o2
IRy, sin%0 + Rblcosze](%’-) as .

The numerical values for Ryjj, Rpy are those either calculated or measured for
the appropriate limiting cases. For example, data taken with an end-burning
T-buraer should in principle provide Rp:; and from measurements with a T-burner
haviang lateral grains, one may be able to determine Rpj. See Section 9 for

additional discussions.
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